Current Publications

Jens Buschert, Marna E. Sakalem, Roja Saffari, Christa Hohoff, Matthias Rothermundt, Volker Arolt, Weiqi Zhang, Oliver Ambrée (2016) Prenatal immune activation in mice blocks the effects of environmental enrichment on exploratory behavior and microglia density. Neuro-psychopharmacology & Biological Psychiatry 67:10–20Abstract: Adverse environmental factors including prenatal maternal infection are capable of inducing long-lasting behavioral and neural alterations which can enhance the risk to develop schizophrenia. It is so far not clear whether supportive postnatal environments are able to modify such prenatally-induced alterations. In rodent models, environmental enrichment influences behavior and cognition, for instance by affecting endocrinologic, immunologic, and neuroplastic parameters. The current study was designed to elucidate the influence of postnatal environmental enrichment on schizophrenia-like behavioral alterations induced by prenatal polyI:C immune stimulation at gestational day 9 in mice. Adult offspring were tested for amphetamine-induced locomotion, social interaction, and problem-solving behavior as well as expression of dopamine D1 and D2 receptors and associated molecules, microglia density and adult neurogenesis. Prenatal polyI:C treatment resulted in increased dopamine sensitivity and dopamine D2 receptor expression in adult offspring which was not reversed by environmental enrichment. Prenatal immune activation prevented the effects of environmental enrichment which increased exploratory behavior and microglia density in NaCl treated mice. Problem-solving behavior as well as the number of immature neurons was affected by neither prenatal immune stimulation nor postnatal environmental enrichment. The behavioral and neural alterations that persist into adulthood could not generally be modified by environmental enrichment. This might be due to early neurodevelopmental disturbances which could not be res- cued or compensated for at a later developmental stage. 
Saffari R, Teng Z, Zhang M, Kravchenko M, Hohoff C, Ambrée O, Zhang W (2016) NPY+-, but not PV+-GABAergic neurons mediated long-range inhibition from infra- to prelimbic cortex. Transl Psychiatry 6:e736.Abstract:Anxiety disorders are thought to reflect deficits in the regulation of fear memories. While the amygdala has long been considered a site of storage of fear memories, newer findings suggest that the prefrontal cortex (PFC) is essential in the regulation of amygdala-dependent memories and fear expression. Here, activation of the prelimbic cortex (PrL) enhances the expression of fear, while an elevated activity in the infralimbic cortex (IL) enhances fear extinction. Despite the presence of these facts, we still know very little about the synaptic interconnectivity within the PFC. The aim of the present study was to investigate the inhibitory circuits between prelimbic and IL using morphological and electrophysiological methods. Our immunohistochemical analysis revealed that the distribution of PV+- and NPY+-GABAergic neurons was strikingly different within the PFC. In addition, we provided the first experimental evidence that the pyramidal neurons in the PrL received a direct inhibitory input mediated by bipolar NPY+-GABAergic projection neurons in the IL. Deletion of the anxiety-related neuroligin 2 gene caused a decrease of this direct synaptic inhibition that originated from the IL. Thus, our data suggested that activation of the IL might not only directly activate the corresponding downstream anxiolytic pathway, but also suppress the PrL-related anxiogenic pathway and thus could differentially bias the regulation of fear expression and extinction.