Welcome to Pathobiochemistry!


Our Research

The focus of our group is blood vessels, inflammation, and secondary lymphoid organs, and how the extracellular matrix impacts on these tissues and processes.

It is well established that the ECM can influence the development, migration and longevity of cells by direct receptor-mediated interactions. However, there is increasing evidence for indirect effects of the ECM resulting from presentation or controlled release of bound factors or bioactive fragments, and spatial information resulting from the 3D organization of the ECM. Our aim is define how both direct and indirect effects of the ECM influence tissue development and homeostasis, and how this is altered in pathological situations.

Several models/ tissues are central to our investigations:

  1. Murine experimental autoimmune encephalomyelitis (EAE) a model for the human disease, multiple sclerosis. Work on this model focuses on mechanisms employed by different leukocyte types to transmigrate across central nervous system (CNS) blood vessels. Comparisons are made with other inflammation models include type 1 diabetes (NOD mice), skin inflammation (delayed hypersensitivity (DTH)), and peritonitis. (see SFB 1009 and TR SFB 128)

  2. Secondary and tertiary lymphoid organs, including lymph nodes, the spleen and the lymph node-like structures that form in chronically inflamed tissues, where the contribution of the ECM to structure and function of the organ is investigated (see http://sfb492.uni-muenster.de)

  3. The use of the cre-loxP system to generated mice lacking specific ECM molecules in defined tissues and/ or at define develomental stages. This work focuses of the laminin family of glycoproteins, one of the major components of basement membranes, and conditional elimination of defined laminins in the skin, endothelium, pericytes and smooth muscle. Part of this work is in an EU fund "Inititial Training Network (ITN)" entitled SmArt, which deals with small artery remodelling in vascular disease (see www.smallartery.eu).

  4. Murine models of stroke, with focus on the role of the ECM on structural and functional integrity of the neurovascular unit and the role of inflammation in stroke. 
    This work is carried out within the EU cooperative project "EUSTROKE" (see www.europeanstrokenetwork.eu),  a Marie Curie ITN nEUROinflammation (http://www.neuroinflammation.eu/) and  the EU cooperative project SVDs@Target (http://www.svds-at-target.eu).