# Controversial taxonomy of Strumariinae (Amaryllidaceae) investigated by nuclear rDNA (ITS) sequences 

\author{

1. Hessea, Namaquanula, Kamiesbergia, and Dewinterella
}

Katja Weichhardt-Kulessa ${ }^{1}$, Thomas Börner ${ }^{2}$, Jürgen Schmitz ${ }^{3}$, Ute Müller-Doblies ${ }^{4}$, and Dietrich Müller-Doblies ${ }^{1}$<br>${ }^{1}$ Institut für Ökologie und Biologie, Technische Universität Berlin, Berlin, Germany<br>${ }^{2}$ Institut für Biologie (Genetik), Humboldt-Universität zu Berlin, Berlin, Germany<br>${ }^{3}$ Deutsches Primatenzentrum, Göttingen, Germany<br>${ }^{4}$ Berlin, Germany<br>Received February 20, 1998<br>Accepted August 16, 1999


#### Abstract

Two opposing opinions concerning the generic differentiation of Amaryllidaceae subtribe Strumariinae two taxonomic opinions were published in the last decade. According to MüllerDoblies and Müller-Doblies (1985, 1994) the Strumariinae includes eight genera, among them Hessea, Namaquanula, and Dewinterella. Snijman (1991) described the new genus Kamiesbergia and accepted Namaquanula (1992). Of the entire complex she recognized only Hessea (Snijman 1994). The section Myophila was simultaneously described as the genus Dewinterella by MüllerDoblies and Müller-Doblies.

The possible phylogenetic relationships of eight species belonging to these taxa are estimated from the sequences of the ITS regions of the 18S-25S rDNA. Two species of Nerine are used as the outgroup. The sequences of these taxa are analyzed with maximum parsimony, distance, and maximum likelihood methods. In all phylogenetic reconstructions Namaquanula is confirmed to be an independant clade aside from all other six species of the Strumariinae. In this group Hessea and Dewinterella turn out to be sister groups. Hessea stenosi-


phon (subgenus Kamiesbergia) is the sister taxon of $H$. breviflora.

Key words: Amaryllidaceae, Strumariinae. Phylogeny, ITS 1, ITS 2, 18 S rDNA, 25 S rDNA, maximum parsimony analysis, distance analysis, maximum likelihood analysis.

The cosmopolitan family Amaryllidaceae consists of nine tribes, some of them divided into subtribes (Dahlgren et al. 1985). The predominantly South African tribe Amaryllideae is the largest tribe of the family according to the number of genera (11-16 genera) and the second in size according to the number of species. It comprises two subtribes, Amaryllidinae (confined to Africa except for the subcosmopolitan genus Crinum) and Strumariinae (endemic to southern Africa).

Most genera of the Amaryllidinae have been revised, either provisionally or comprehensively, throughout the second and third quarters of this century: Ammocharis and

Cybistetes (Milne-Redhead and Schweickerdt 1939), Brunsvigia (Dyer 1950, 1951), Nerine (Traub 1967), and Crinum in South and East Africa (Verdoorn 1973, Nordal 1977) and Cameroun (Nordal and Wahlstrøm 1980).

Numerous classifications from the 19th century dealing with the Hessea-Strumaria group and its related genera can be found (Herbert 1837, Kunth 1850, Salisbury 1866, Baker 1888) which reveal a heterogeneous picture of this cluster. Not until the middle of this century, however, did several botanists start working on it again: Barker (1948), Leighton (1948), Obermeyer (1963), Traub (1963), and Goldblatt (1976). In 1985 MüllerDoblies and Müller-Doblies validated Traub's (1957) Strumariinae as a subtribe including seven genera: Carpolyza Salisb., Namaquanula D. \& U. M-D., Strumaria Jacq., Bokkeveldia D. \& U. M-D. (segregated from Strumaria), Gemmaria Salisb. (segregated from Hessea), Hessea Herb., and Tedingea D. \& U. M-D. Nine years later another genus, Dewinterella D. \& U. M-D., was added (Müller-Doblies and Müller-Doblies 1994), accommodating two isolated species of Gemmaria. The new genera were accepted by Gunn et al. (1992), Brummitt (1992), and Greuter et al. (1993). Two of them, Tedingea and Namaquanula, were also approved by Snijman and Perry (1987) and Snijman (1992). At the beginning of the nineties a new genus of the Strumariinae, Kamiesbergia Snijman, was published (Snijman 1991) which Müller-Doblies and Müller-Doblies had published as a new species of Hessea at the same time. Shortly afterwards Kamiesbergia stenosiphon was changed to Hessea stenosiphon (Müller-Doblies and Müller-Doblies 1992).

Snijman, (1994) who did not recognize the subtribe Strumariinae of Amaryllideae, divided it into two subclades, $\mathrm{A}^{1}(=$ Hessea sensu Snijman) and subclade $\mathrm{A}^{2}$ ( $=$ Carpolyza and Strumaria sensu Snijman). The subclade $\mathrm{A}^{1}$ contains three subgenera, Namaquanula, Kamiesbergia, and Hessea. Hessea subgen. Namaquanula consists of two sections: section Namaquanula (formally) with the single species
H. bruce-bayeri (D. \& U. M-D.) Snijman and section Myophila with two species, $H$. pulcherrima (D. \& U. M-D.) Snijman and H. mathewsii W. F. Barker (Fig. 1). When the latter sectional taxon was published in June 1994, the genus Dewinterella D. \& U. M-D. with the same two species, D. pulcherrima (D. \& U. M-D.) D. \& U. M-D. and D. mathewsii (W. F. Barker), was already in print. As both taxa, the section Myophila and the genus Dewinterella, do not compete for priority, it is possible, therefore, to consider them as more or less simultaneously published.

The second subgenus, $H$. subgen. Kamiesbergia, is monotypic with Hessea stenosiphon (Snijman) D. \& U. M-D.

The subgenus $H$. subgen. Hessea includes nine species. Three of them, $H$. breviflora, H. stellaris, and H. cinnabarina, are analyzed in the present paper of which the latter species deserves a taxonomic note. It was not recognized by Snijman and was treated as synonymous with $H$. stellaris. The same problem occurred with $H$. longituba which was placed into the synonymy of $H$. breviflora.

Thus within the subclade $\mathrm{A}^{1}$ none of the three additional genera published between 1985 and 1994 are recognized, not even the genus Kamiesbergia of 1991. A single genus, Hessea, is left (Fig. 1).

There are some molecular studies of the Amaryllidaceae and closely related families, such as Liliaceae (Shinwari et al. 1994, Fay and Chase 1996). Snijman (1994) presented a scheme of the phylogenetic relationships of the Strumariinae based on morphological and anatomical data. Because of the controversial discussion concerning the phylogeny of the Strumariinae, it is useful to look for a new source of information for the phylogenetic reconstruction, based on the results in several publications dealing with ITS sequence data as a successful tool to reconstruct the phylogeny of certain plant groups (e.g. Poaceae by Hsiao et al. 1994, 1995a, b; Fabaceae by Wojciechowski et al. 1993; Asteraceae by Baldwin 1992, 1993), this region of the nuclear rDNA,


Fig. 1. Snijman's dendrogram containing the modified subclade $\mathrm{A}^{1}$
the internal transcribed spacer (ITS) with the intervening 5.8S gene, was chosen. Therefore, it is hoped that this study provides a new and conclusive phylogenetic scenario of the Strumariinae.

## Material and methods

Taxon sampling. Ten species, all arranged in the tribus Amaryllideae of Amaryllidaceae, were used for the sequence determination of the 5.8 S gene and flanking transcribed spacers (ITS 1 and ITS 2 regions): Dewinterella pulcherrima, Hessea breviflora, H. cinnabarina, H. longituba, H. stellaris, H. stenosiphon, Namaquanula bruce-bayeri, N. etesionamibensis, Nerine humilis, and N. sarniensis. Both species of Nerine were chosen as the outgroup, because they belong to the Amaryllidinae and are therefore closely related to the genera of the Strumariinae. Moreover, Nerine was used as the outgroup in Snijman's work (1994), so that the results are well comparable.

This study was based on living materials of cultivated plants from wild provenance. The plants were collected in southern Africa and grown as flowers in a greenhouse of the Institute of Ecology of the Technical University of Berlin. The species, their abbreviations, taxonomic positions, cultivation numbers, collectors, collection numbers, grid numbers, and localities are listed in Table 1.

The leaves of two individual plants of each species from different locations - when available were harvested and stored at $-30^{\circ} \mathrm{C}$ until DNA extraction.

DNA extraction and sequencing. To avoid mislabeling or cross-contamination of DNA, DNA's
of different species and individuals were isolated on different days.

About 1 mg fresh or frozen leaves were homogenized in $400 \mu \mathrm{l}$ Wilson-buffer ( 100 mM Tris, 10 mM EDTA, $100 \mathrm{mM} \mathrm{NaCl}, 0.1 \%$ SDS, pH 8.0 ) with a pestle. The homogenate was treated with RNAse, proteinase $\mathrm{K}(50 \mu \mathrm{~g} / \mathrm{ml})$, and $1 \%$ SDS for 2 h at $55^{\circ} \mathrm{C}$. Proteins and cell debris were extracted once with a phenol/chloroform/isoamylalcohol mix ( $25: 24: 1$ ), once with a chloroform/isoamylalcohol mix (24:1) and precipitated in ethanol (Sambrook et al. 1989).

The investigated DNA region was amplified with primers described by Hsiao et al. (1995a, b). The primer ITSL ( $5^{\prime}$-TCGTAACAAGGTTTCCG-TAGGTG-3') anneals to the $3^{\prime}$ end of the $18 S$ rDNA near the ITS 1 border, and the primer ITS4 ( $5^{\prime}$-TCCTCCGCTTATTGATATGC- $3^{\prime}$ ) is complementary to the $5^{\prime}$ end of the 25 S rDNA near the ITS 2 border. ITSL and ITS4 cover the entire ITS region which is divided by the 5.8 S gene into the ITS 1 and ITS 2 regions.

To confirm each sequence, the DNA of two different individuals were sequenced and compared. The sequences of each individual were also done in both directions by using complementary strands.

The PCR was carried out in a thermal cycler (Biometra) and set for initial $93^{\circ} \mathrm{C}$ for 3 min (denaturation), followed by 37 cycles at $93^{\circ} \mathrm{C}$ for 30 sec (denaturation), $59^{\circ} \mathrm{C}$ for 30 sec (primer annealing), and $72^{\circ} \mathrm{C}$ for 30 sec (polymerization). An elongation of the PCR products by $72^{\circ} \mathrm{C}$ for 5 min completed the reaction. About 10 ng template DNA, 400 nM primer, $200 \mu \mathrm{M}$ dNTPs, 1.5 mM MgCl 2 , 10 x buffer ( 100 mM TrisHCl, pH $\left(25^{\circ} \mathrm{C}\right) 9.0,500 \mathrm{mM} \mathrm{KCl}, 15 \mathrm{mM} \mathrm{MgCl} 2,1 \%$ TritonX100, $2 \mathrm{mg} / \mathrm{ml}$ BSA or gelatin, $70^{\circ} \mathrm{C}$ ), and 5
Table 1. Species, their abbreviations, taxonomic positions, cultivation numbers, collectors, collection numbers, grid numbers, and localities of 10 Amaryllidaceae included in this study

| Taxonomic position Species/Abbreviation | Cultivation number | Collector | Collection number | Grid number | Locality |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Strumariinae |  |  |  |  |  |
| Dewinterella pulcherrima D. \& U. | 2032/5 | U. and D. M-D. | 78042 e | 3119DA | type coll. |
| M-D./ | 6748/3 | " | 86045d | 3119BC | near type loc. |
| D. pulch. |  |  |  |  |  |
| Hessea breviflora Herb./ | 6201/2 | E. G. H. Oliver | EGHO 8584 | 3118 DC | Nardousberg |
| H. brev. | 8421/3 | " | EGHO s.n. | 3018DB | Kliprand |
| H. cinnabarina D. \& U. M-D./ | 3919/1 | U. and D. M-D. | 80077b | 3019CC | type coll. |
| H. cinn. | 3919/5 | " | " | " | " |
| H. longituba D. \& U.M-D./ | 4105/5 | " | 80096 v | 2917BB | " |
| H. long. | 7195/1,1 | " | 88084b | 2917BD | N Concordia |
| H. stellaris (Jacq.) Herb./ | 1825/A | M. B. Bayer | MBB 837a | 3319DA | NE Worcester |
| H. stel. | 3380/2 | U. and D. M-D. | 79237 a | 3118DB | S Vanrhynsdorp |
| H. stenosiphon (Snijman) D. \& U. | 8472/4 | " | 90109a | 3018AC | $\pm$ type loc. |
| M-D./ | 8472/6 | " | " | " | " |
| H. sten. |  |  |  |  |  |
| Namaquanula bruce-bayeri D. \& | 2808/5 | " | 79112a | 2816BC | type coll. |
| U. M-D./ | 7445 | " | 88142f | 2716CB | Rooiberg, |
| N. b-b. |  |  |  |  | Sperrgebiet |
| N. etesionamibensis D. \& U. M-D. | 7138/6 | " | 88070 c | 2817AA | type coll. |
| /N. etes. | 7138/21 | " | " | " | " |
| Amaryllidinae (outgroup) |  |  |  |  |  |
| Nerine humilis (Jacq.) Herb./ | 852/1,1 | " | 74043 m | 3420AA | W Swellendam |
| Ne.hum. | 5131/1,4 | " | 82113 a | 3218DB | Piekenierskloof Pass |
|  | 873/3,6 | " | 74052 a | 3418BD | Betty's Bay |
| N. sarniensis (L.) Herb./ |  |  |  |  |  |
| Ne. sarn. | 3382/3 | " | 79240a | 3318DB | Riebeek Kasteel |

U/100 Taq-polymerase (Appligene, Heidelberg) were used.

The amplified DNA fragment was purified by electrophoresis through $1 \%$ agarose gel in TAE buffer ( 0.4 M Tris, $0.2 \mathrm{M} \mathrm{NaAc}$,0.01 M EDTA, pH 8.0). QIAquick Gel Extraction Kit (Qiagen, Hilden) was used to purify the gel slice containing the DNA fragment. The final yield was stored at $30^{\circ} \mathrm{C}$.

The purified double-stranded PCR products of all species were directly sequenced on a 373 DNA sequencer (Applied Biosystems, ABI) using Taq polymerase and dye-terminators according to the ABI manufacturer's instructions.

Sequence alignment and data analysis. The sequence data of the roughly 660 bp amplified DNA of the investigated species were aligned using CLUSTAL V multiple sequence alignment program (Higgins et al. 1992).

The parsimony analysis was conducted with the computer program PAUP, version 3.1.1 (Swofford 1993) using the branch and bound search options to find the most parsimonious tree for the amplified DNA. All uninformative characters were ignored, and gaps were treated as missing or as a "fifth base". Bootstrap values were determined from 500 replications.

The distance analysis of the same aligned sequences was conducted with the computer program MEGA, version 1.01 (Kumar et al. 1993). Gaps were excluded by the pairwise deletion option. Both the Tajima-Nei distance (Tajima and Nei 1984) and the Kimura 2-parameter distance (Kimura 1980) were used for the reconstruction of the MEGA neighbor-joining tree (Saitou and Nei 1987). Bootstraps were done with 100 replications.

Maximum likelihood trees were constructed by the PHYLIP-DNAML program, version 3.5 c (Felsenstein 1993).

The comparison of tree length was done by the MacClade 3 program (Maddison and Maddison 1992). To be able to compare the tree length of Snijman's dendrogram (1994) and the DNA dendrogram it was necessary to bring both dendrograms into agreement concerning the investigated species. Therefore only those species represented in both studies were included the calculation of the tree length, so that the number of taxa had to be diminished. Seven taxa were then left: Dewinterella pulcherrima, Hessea breviflora, H. stenosiphon, H. stellaris, Namaquanula brucebayeri, and both species of Nerine.

## Results

Sequence variation of ITS region. All in all the aligned sequences yielded 662 characters, including the $3^{\prime}$ end of the 18 S gene and the $5^{\prime}$ end of the 25 S gene. The endpoints of the regions of the ITS regions and genes were based on comparative analysis (Fig. 2).

Table 2 gives information about the total character of the different regions of the amplified DNA and their variable and informative positions.

The length of the complete ITS region of the 10 studied Amaryllidaceae species ranged from 638 to 640 nucleotides. The ITS 1 region varied from 242 to 245 base pairs (bp) in length, and the ITS 2 region spanned from 231 to 232 bp . The length of the 5.8 S gene, 164 bp , was constant in all species (Fig. 2; Table 3).

Table 2. Sequence variation in the ITS region and variable and informative sites of 10 Amaryllidaceae subtribe Strumariinae and Amaryllidinae

| Region | Range from $\cdots$ to | Total character | Variable sites | Informative sites |
| :--- | :--- | :--- | :--- | :--- |
| Total character | $1 \cdots 662$ | 662 | 165 | 124 |
| Total ITS | $7 \cdots 648$ | 642 | 164 | 123 |
| ITS 1 | $7 \cdots 252$ | 246 | 68 | 52 |
| 5.8S | $253 \cdots 416$ | 164 | 18 | 14 |
| ITS 2 | $417 \cdots 648$ | 232 | 78 | 57 |

Note: Sites refer to aligned positions in Fig. 2.

Table 3. Sequence length of total character and total ITS and single ITS 1, 5.8S, and ITS 2 regions and G+C percentage of total ITS in 10 Amaryllidaceae subtribe Strumariinae and Amaryllidinae

|  | Total <br> character |  | TTS 1 | 5.85 | ITS 2 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Species |  | length <br> (in bp) | $\%(G+C)$ | length (in bp) | length (in bp) length (in bp) |  |
| D. pulch. | 658 | 638 | 60 | 242 | 164 | 232 |
| H. brev. | 659 | 639 | 56 | 244 | $"$ | 231 |
| H. cinn. | 660 | 640 | 57 | $"$ | $"$ | 232 |
| H. long. | 659 | 639 | 56 | $"$ | $"$ | 231 |
| H. stel. | 660 | 640 | 57 | $"$ | $"$ | 232 |
| H. sten. | 659 | 639 | 56 | $"$ | $"$ | 231 |
| N. b-b. | 660 | 640 | 55 | $"$ | $"$ | 232 |
| N. etes. | $"$ | $"$ | 55 | $"$ | $"$ | $"$ |
| Ne. hum. | $"$ | $"$ | 60 | 245 | $"$ | 231 |
| Ne. sarn. | $"$ | $"$ | $"$ | 245 | $"$ | $"$ |

For species abbreviations see Table 1.

The exact sequence length of the different regions and the $\mathrm{G}+\mathrm{C}$ percentages of the entire ITS regions for all studied species are given in Table 3. Hsiao et al. (1994) found the same length of the 5.8 S gene in the species of Poaceae and similar $\mathrm{G}+\mathrm{C}$ percentages, ranging from $57.6 \%$ to $64 \%$.

Whereas most of the sequence variation occurred in the spacer regions, there was little variation within the 5.8 S subunit. All in all only 18 variable nucleotide positions could be found there (Fig. 2).

Of the 10 taxa examined, the ITS sequences of the two species of Nerine were identical. Obvious similarities could be found in all sequences of the species of Hessea, of which the sequences of Hessea cinnabarina and H. stellaris showed a difference in 11 nucleotide positions. The sequences of $H$. breviflora and H. stenosiphon varied in 8, the sequences of H. breviflora and H. longituba in 6 nucleotide positions. There was also considerable congruence between the two species of Namaquanula, which differed in 18 nucleotide positions. The sequence of the only species of

Dewinterella, D. pulcherrima, resembled the sequences of the species of Hessea more than those of Namaquanula (Fig. 2).

Phylogenetic analysis. The phylogenetic analysis of the investigated species is based on the alignment shown in Fig. 2.

Figure 3 presents the most parsimonious tree (PAUP) obtained from the entire ITS regions (ITS 1 and 2) with a tree length of 158 (123 informative positions). The consistency index (CI) value for this tree is 0.854 , which is relatively high and therefore indicated a strong phylogenetic signal in the data. Gaps were treated as missing data.

The species of Hessea clustered with a bootstrapping value of $98 \%$. In this cluster Hessea cinnabarina and $H$. stellaris were separated based on a bootstrap confidence of $99 \%$. The other three species of Hessea, H. longituba, H. breviflora, and H. stenosiphon, were grouped with a $100 \%$ bootstrap of which $H$. breviflora and $H$. stenosiphon were separated from $H$. longituba by a bootstrap value of $67 \%$. The separation of Hessea and Dewinterella was supported by a bootstrap
D.pulch H.brev. H.cinn. H.long. H.stel. H.sten. N.b-b. N.etes. Ne.hum. Ne.sarn.
D.pulch. B.brev. H.cinn. H.long. H.stel. F. sten. N.b-b. N.etes. Ne.hum. Ne.sarn.
D.pulch. H.brev. H.cinn. H. Iong. Fi.stel. H. sten. N.b-b. N.etes. Ne. hum. Ne.sarn.
D.pulch. H.brev. E.cinn. H. long. H.stel. H. sten. N.b-b. N.etes. Ne. hum. Ne.sarn.
D.pulch. H.brev. H. cinn. H. long. H.stel. H.sten. N. b-b. N.etes. Ne. hum. Ne.sarn.
D.pulch.
H.brev.
H.cinn. H.long. H.stel. H. sten. N.b-b. N.etes. Ne. hum. Ne.sarn.

| TCATTGTCGT | GGTTTGAATA | GATGCTTGCG | AACtcgtaga | GCACCTGTAG | GC-TCGCAGA |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | . . . CC. | . . A. |  | T. | .GA. . . . . . |
|  | . . . CC. |  |  | . .G. | . GA. |
|  | . C. | .A. |  |  | . GA. |
|  | . . CC. | . . . . . . . . | . . . . . . . . | . .G. | . GA. |
|  | . . . CC. |  |  |  | . GA. |
|  | . GC. | . $A$ | T. . T. | .T...G. | . GA |
|  | .G. . | . C. . A. . A | T..T. | .T...G. | . GA. |
|  | . . CCC. |  | T..G. |  | . GA. |
|  | CCC. | . $A$ | T..G.. |  | . GA. |
|  | 매 | ■ $\square$ | $\square]$ | - [ |  |

GGCTGTGGCG ATTGCTGCCG CATCCGCCAC CTGGGGTGCC ATTGCCGTTG CCTTCGCCTT 120
… . . . . . . . . . . T. .T. . T. . . . . . . . . . . . . . . . . . . .
С.T...... . . .G.T...T. . С.TT...T. ..TA...... ..........

GCA-TGGCTG CGGGAGAGGG -TAGTGGGAA CAA-CATCCG GCGCGTCGTG CGCCAAGGAG 180


CAAGACCTGT TGGAGAGCAG AGCGTGCTGG CATGCTAGTT GCTCGAGCTT GCGATGCGAT 240




..T.....A. ................................GC.T.G....................


| .T...... ....c.... |
| :---: |
|  |  |

- 

ㅁㅁ
(1) 5.8 S

CTTTGGTACT TCATTACGAC TCTCGGCAAC GGATATCTTG GCTCTCGCAT CGATGAAGGA 300

 ....................... $\qquad$
$\qquad$




CGTAGCGAAA TGCGATACTT GGTGTGAATT GCAGAATCCC GTGAACCATC GAGTCITTGA 360





$\square$

Fig. 2. Aligned sequences of 10 taxa of Amaryllidaceae subtribe Strumariinae and Amaryllidinae. Numbers indicate the succeeding positions of 1 to 662 from the end of the 18 S region to the beginning of the 25 S region; arrows mark the beginning of ITS $1,5.8 \mathrm{~S}$, and ITS 2 regions; dashes denote gaps; dots indicate identity to Dewinterella pulcherrima; blank rectangles mark informative sites

|  |  |  |  |  |  | 8. ITS 2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D.pulch. | ACGCAAGTTG | CGTCCGAGGC | tatctggcta | Agggcacgcc | tGCCTGGGCA | TCACGCCTCG |  |
| H.brev. |  | C |  |  | T |  |  |
| H.cinn. |  | . . C. |  |  |  |  |  |
| H.long. |  | C | C. |  |  | I |  |
| H.stel. |  | . C . |  |  |  |  |  |
| H.sten. |  | . С. т. | C. |  |  |  |  |
| N. ${ }^{\text {b-b. }}$ | .......... | . С. C . | I | T |  | . . . . |  |
| N.etes. |  | ..С.т | T. | T |  | . . . . ${ }^{\text {T. }}$ |  |
| Ne.hum. |  | . C |  |  |  |  |  |
| Ne.sarn. |  | $\begin{gathered} \text {. C. . . . . } \\ \square \end{gathered}$ | $\square \square$ | $\square$ |  | $\square$ |  |
| D.pulch. | TGACGCTTCG | TGCCATCTEC | cCCCCACCTG | GTGCTGGTGA | caactegcec | gAacGCGgGg | 480 |
| H.brev. | . .T. | . . . . C. . A. | T. | . A . | G..T.... A. | . T . |  |
| H.cinn. | . . ${ }^{\text {T. }}$ | .....c. A. | ...T. | . A. | G. |  |  |
| H.long. | . ${ }^{\text {T. }}$ | . . . . C. .A. | . T. | .A... | G..T...T.T | T |  |
| H.stel. | T. | ...T.C.A. | T...T | .A. | G. |  |  |
| H.sten. | G.......T. | .....C. $A$. | .T. | .A. | G..T....A. | .T. |  |
| N. ${ }^{\text {- }}$ - | . T . | . . C. | .GTTT. . . . T | ...TA. C. | T......T. | ..T..T.CA. |  |
| N.etes. | . T. | .....CT. .T | .GTTT. . . . ${ }^{\text {T }}$ | . A. .C. . | T......T. | ..T. T.CA. |  |
| Ne.hum. |  | c. | .T. | . A. C. | .T. | . . . . TC.A. |  |
| Ne.sarn. |  | C. | ...T..... | .A. C. . | T. | .TC.A. |  |
|  | $\square$ | $\square$ | [ - ■ | [1] | [ ] 미 | $\square$ 믄 |  |
| D.pulch. | ACTGGCCCTC | TGTGCCTCGT | cgitgcegtgg | GTTAAAGTGT | GCGTCGTIGG | CgGGTCGGAT | 540 |
| H.brev. | . 7 |  |  | . . . . . . . . | .G.CT. . | . . . C.T. |  |
| H.cinn. | . C . |  |  | . . . . | .G.CT. | T...C.T. |  |
| H.long. | . $T$ |  |  |  | .G.CT. . | . . . . C T. |  |
| F.stel. | C. |  |  |  | .G.C. | . . C .T. |  |
| H.sten. | . T |  |  | . $\cdot$ - $\cdot$ - | .G.CT. | . . . CTT. |  |
| N.b-b. | .T......CT | ...A.G. A. | . A. |  | .G........ | T...CT. |  |
| N.etes. | .T......CT | , . A.G. .A. | A. |  | .G. | T...CT. |  |
| Ne.hum. | -T......C. | .....G. $A$. |  |  | .G.C...C. . | . . C. |  |
| Ne.sarn. | -T......C. | . . . . G. $A$. |  |  | .G.C...C. | . C . |  |
|  | $\square$ [] | $\square \square \square$ | $\square$ |  | $\square \square$ | - पС |  |
| D.pulch. | GCGGCGAGTG | gTGgagatca | CACGCACGAC | GTCGTTGGAG | AIgCCCAgcc | CAgAACGgTG | 600 |
| F.brev. | .T. | . T . | .A. | . . | ....T.C..T | .T. . . . . . |  |
| H.cinn. | T. | T | A. |  | ..T.T. | . T. |  |
| H.long. | T. | T. | A. |  | ..T.C..T | .T... |  |
| H.stel. | T | .T. .A. | A. |  | ..T.T. | . T. |  |
| H.sten. | Tr. | T | .A. . . . | . . . . . . . . | ....T.C..T | . T . |  |
| N.b-b. | T. |  | . .A. . T', T |  | T.....TA. | AT. . T. |  |
| N.etes. | ....I. |  | T.A...... | . . . . . . . . | T.....TA.. | AT...T. |  |
| Ne.hum. |  |  |  | . C. . . C. | T.....T. | TT..... ${ }^{\text {T. }}$ |  |
| Ne.sarn. |  |  |  | .C. . . C. | T.....T. | T'T..... T |  |
|  | $\square \square$ | $\square$ | $\square \square \square$ | $\square \square$ | - $\square$ - $\square$ | $\square \square \square$ |  |
|  |  |  |  |  |  | 25s |  |
| D.pulch. | Cgttggagg | ATCCACGTGG | GTGGGCGCAA | GTrgAgcgcc | CTTAGAACAA | GATCCCAgGT | 660 |
| H.brev. | . A. A. . . A | . . . . . . CT. | . . C. | . . | T..G..T-. |  |  |
| H.cinn. | . A. .A. .. A | . . . . . . CT. | . C . |  | ...G... |  |  |
| H.long. | . A. .A. . . A | . . . . . . CT. | . C | . | T..G..T- |  |  |
| H.stel. | .A. A. ... A | . . . . .G.CT. | . $C$. | . | T..G. |  |  |
| H.sten. | . A. . A. . . A | . СT. | c. |  | T..G..T- |  |  |
| N. b-b. | .A....... $A$ | . . .T. |  | .G.....AT. | ...G..G. |  |  |
| N.etes. | . $A . . . . . .$. A | ..T. | ......T.... | .GG. . . AT. | ...G..G. . |  |  |
| Ne.hum. | . $A . . . . .$. A | . CT . |  |  | . .G.....T |  |  |
| Ne.sarn. | .A.......A | . . CT. |  |  | .G..... ${ }^{\text {T }}$ |  |  |
|  | $\square$ | $\square$ | $\square$ | ] 吅 | - [ ] |  |  |
| D.pulch. | CA |  |  |  |  |  |  |
| H.brev. | $\cdots$ |  |  |  |  |  |  |
| H.cinn. |  |  |  |  |  |  |  |
| H.long. | $\cdots$ |  |  |  |  |  |  |
| H.stel. | .- |  |  |  |  |  |  |
| H.sten. |  |  |  |  |  |  |  |
| N.b-b. | . |  |  |  |  |  |  |
| N.etes. |  |  |  |  |  |  |  |
| Ne.hum. | .- |  |  |  |  |  |  |
| Ne.sarn. | . |  |  |  |  |  |  |

Fig. 2 (continued)


Fig. 3. Most parsimonious tree obtained from the entire ITS region. Numbers in circles denote bootstrap percentages; numbers above the branches indicate the inferred branch-length excluding uninformative characters
confidence of $100 \%$. The monophyly of Namaquanula was confirmed by a $100 \%$ bootstrap confidence. The separation of Hesseal Dewinterella and Namaquanula from a common ancestor was sustained by a $100 \%$ bootstrap.

The same tree topology gained from the whole ITS region occurred when gaps were treated as a "fifth base".

The MEGA neighbor-joining trees based on the analysis of the entire ITS region revealed exactly the same tree topology compared to the tree obtained from the parsimony analysis. Both trees (not shown), the one done with the Tajima-Nei distance and the other one done with the Kimura-2-parameter distance, showed that the species of Hessea were grouped with a bootstrapping value of $98 \%$ or $99 \%$. H. stellaris and $H$. cinnabarina on the one hand and H. breviflora, H. stenosiphon, and H. longituba on the other hand, each clustered with a
bootstrap confidence of $100 \%$. The separation of $H$. breviflora and $H$. stenosiphon from H. longituba was sustained by a bootstrap value of $74 \%$ or $82 \%$. Hessea and Dewinterella were separated, supported by a $100 \%$ bootstrap. The same bootstrap value indicated the monophyly of Namaquanula which turned out to be a sister group of Hessea/Dewinterella with a $100 \%$ bootstrap confidence.

The PHYLIP maximum likelihood tree (not shown) further confirmed the topology of the parsimony tree.

The most parsimonious trees (PAUP) obtained only from the single ITS 1 and ITS 2 regions both had a high CI value ( 0.894 and 0.813 ) which pointed to a strong phylogenetic signal in the data. Both trees turned out to be identical in their tree topology compared to the other trees. Only in some species of Hessea did both trees present polytomies.

Tree length analysis. The comparison of the tree length between the two different dendrograms (Figs. 1, 3) showed that 28 additional steps would be necessary to impose Snijman's tree topology on the molecular data.

## Discussion

According to Snijman's subclade $\mathrm{A}^{1}$ Hessea mathewsii and $H$. pulcherrima $(=$ Dewinterella pulcherrima) are presented as a sister group of H. bruce-bayeri ( = Namaquanula bruce - bayeri) (Fig. 1). The DNA phylogeny, however, showed that Dewinterella is a sister group of Hessea, indicated by a $100 \%$ bootstrap confidence. Namaquanula turns out to be the sister group to Dewinterella and Hessea which is also sustained by the maximum bootstrap value of $100 \%$ (Fig. 3). The result of this parsimony analysis was confirmed by the same results gained from the distance analysis and maximum likelihood trees.

This result indicates that the generic rank should be used instead of the subgeneric and sectional rank for all three taxa.

Figure 4 compares of Snijman's modified dendrogram (Fig. 1) on the left hand side and


Fig. 4. Comparison of Snijman's dendrogram on the left hand side and the dendrogram based on the DNA phylogeny on the right hand side. Bold lines mark the species investigated on both sides; bold lines also unite the taxa Hessea subgen. Hessea and subgen. Kamiesbergia on the left and the taxon Hessea s.str. (sensu Müller-Doblies and Müller-Doblies) on the right side; broken line shows H. subgen. Namaquanula on the left and Namaquanula and Dewinterella on the right side; dotted line indicates that this species is represented in Snijman's work but not described by her, asterisks indicate species which are recognized by Müller-Doblies and Müller-Doblies but not by Snijman
the dendrogram based on the DNA phylogeny (Fig. 3) on the right hand side. Different types of lines are used which link taxa in Snijman's dendrogram and correspond to the taxa in the DNA dendrogram so that another fact becomes obvious. Either the monotypic subgenus Kamiesbergia has to be sunk into Hessea s.str. because the DNA analysis proved Hessea stenosiphon to be the sister taxon of $H$. breviflora, or the genus Hessea needs to be subdivided into at least four subgenera just to accommodate the five investigated species of Hessea.

Despite the conviction that Hessea breviflora and H. stellaris are sister taxa (Snijman 1994; Fig. 1), the DNA phylogeny does not support this proposal, for these two species do not cluster as a sister group. All molecular analyses showed that there are two groups of the studied species of Hessea, H. breviflora, $H$. stenosiphon, and $H$. longituba on the one hand and $H$. cinnabarina and $H$. stellaris on the other hand (Fig. 3).

In this context the question has to be raised which of the two patterns uniting the three genera, Hessea, Dewinterella, and Namaquanula, is to be preferred, the dendrogram of the DNA analysis or the one based on Snijman's suggestion (Figs. 3, 1). To begin with, the strong signals in the DNA (e.g. high bootstrap values, the high number of informative sites, high consistency index) strongly support the reconstructed phylogeny. Furthermore, the comparison of the tree lengths of both dendrograms on the basis of the sequences proved the DNA dendrogram to be shorter and therefore more probable. If one also takes the vegetative characters, bulb structures, and floral characters of these three genera into consideration, the affinities are very clear. Hessea and Dewinterella have more characteristics in common, e.g. two foliage leaves and a sheathing cataphyll, than Dewinterella and Namaquanula, whose foliage leaves differ in number from one to five and which lack a sheathing cataphyll (Table 4). The only

Table 4. Morphological comparison between three genera Hessea, Dewinterella, and Namaquanula

|  | Hessea and Dewinterella | Namaquanula |
| :--- | :--- | :--- |
| Vegetative characters |  |  |
| Foliage leaves | 2 | $1-5$ |
| Leaf in cross section | canaliculate | elliptic |
| Bulb structure |  |  |
| $\quad$ Prophyll | present | absent |
| Sheathing cataphyll | stellate (when fully expanded) | absent |
| Floral characters | absent or pterotube | funnel-shaped |
| Perigon |  | eutube |
| Perigon tube |  |  |

common characters between Namaquanula and Dewinterella are the filament appendages and the adjacent papillae at the filament bases (Müller-Doblies and Müller-Doblies 1985, 1994). This morphological comparison stresses the result obtained from the DNA phylogeny, namely that there is a closer relation between Hessea and Dewinterella than between Dewinterella and Namaquanula.

We thank Prof. Dr. Robin F. A. Moritz for providing the laboratory space and also acknowledge Dr. Andreas Weihe's profound introduction into the computer analysis.

## References

Baker J. G. (1888) Handbook of the Amaryllideae, including the Alstroemerieae and Agaveae. George Bell, London.
Baldwin B. G. (1992) Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Molec. Phylogenet. Evol. 1: 3-16.
Baldwin B. G. (1993) Molecular phylogenetics of Calycadenia (Compositae) based on ITS sequences of nuclear ribosomal DNA: chromosomal and morphological evolution reexamined. Amer. J. Bot. 80: 222-238.
Barker W. F. (1948) Plantae novae africanae XX. J. S. African Bot. 14: 29-40.

Brummitt R. K. (1992) Vascular plant families and genera. Royal Botanic Gardens, Kew.
Dahlgren R. M. T., Clifford H. T., Yeo P. F. (1985) The families of the monocotyledones: structure, evolution, and taxonomy. Springer, Berlin Heidelberg New York Tokyo.
Dyer R. A. (1950) A review of the genus Brunsvigia. Pl. Life 6: 63-83.
Dyer R. A. (1951) A review of the genus Brunsvigia Heist. Pl. Life 7: 44-64.
Fay M. F., Chase M. W. (1996) Resurrection of Themidaceae for the Brodiaea alliance, and recircumscription of Alliaceae, Amaryllidaceae and Agapanthoideae. Taxon 45: 441-451.
Felsenstein J. (1993) PHYLIP (Phylogeny inference package), version 3.5 c . Seattle.
Goldblatt P. (1976) Chromosome cytology of Hessea, Strumaria, and Carpolyza (Amaryllidaceae). Ann. Missouri Bot. Gard. 63: 314320.

Greuter W., Brummitt R. K., Farr E., Kilian N., Kirk P. M., Silva P. C. (1993) Names in current use for extant plant genera. Koeltz Scientific Books, Königstein.
Gunn C. R., Wiersema, J. H., Ritchie C. A., Kirkbride J. H. Jr. (1992) Families and genera of Spermatophytes recognized by the Agricultural Research Service. USDA, Beltsville, Maryland.
Herbert W. (1837) Amaryllidaceae. James Ridgway, London.
Higgins D. G., Bleasby A. J., Fuchs R. (1992) CLUSTAL V: improved software for multiple sequence alignment. Cabios 8: 189-191.

Hsiao C., Chatterton N. J., Asay K. H., Jensen K. B. (1994) Phylogenetic relationships of 10 grass species: an assessment of phylogenetic utility of the internal transcribed spacer region in nuclear ribosomal DNA in monocots. Genome 37: 112-120.
Hsiao C. (1995a) Molecular phylogeny of the Pooideae (Poaceae) based on nuclear rDNA (ITS) sequences. Theor. Appl. Genet. 90: 389-398.
Hsiao C. (1995b) Phylogenetic relationships of the monogenomic species of the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences. Genome 38: 211-223.
Kimura M. (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Molec. Evol. 16: 111-120.

Kumar S., Tamura K., Nei M. (1993) MEGA: Molecular evolutionary genetics analysis, version 1.01. Pennsylvania.
Kunth C. S. (1850) Enumeratio plantarum omnium hucusque cognitarum, secundum familias naturales disposita, adjectis characteribus, differentiis et synonymis 5: Enumeratio Asparaginearum. J. C. Collae, Stuttgart, Tübingen.

Leighton F. M. (1948) Some changes in nomenclature:V. J. S. African Bot. 14: 81-83.
Maddison W. P., Maddison D. R. (1992) MacClade: Interactive analysis of phylogeny and character evolution. Sunderland.
Milne-Redhead E., Schweickerdt H. G. (1939) A new conception of the genus Ammocharis Herb. J. Linn. Soc., Bot. 52: 159-197.

Müller-Doblies D., Müller-Doblies U. (1985) De Liliifloris notulae: 2. De taxonomia subtribus Strumariinae (Amaryllidaceae). Bot. Jahrb. Syst. 107: 17-47.
Müller-Doblies D., Müller-Doblies U. (1992) De Liliifloris notulae: 4. Notes on Hessea (including Kamiesbergia; Amaryllidaceae of southern Africa). Gleditschia 20: 15-20.
Müller-Doblies D., Müller-Doblies U. (1994) De Liliifloris notulae: 5. Some new taxa and combinations in the Amaryllidaceae tribe Amaryllideae from arid southern Africa. Feddes Repert. 105: 331-363.
Nordal I. (1977) Revision of the East African taxa of the genus Crinum (Amaryllidaceae). Norweg. J. Bot. 24: 179-194.

Nordal I., Wahlstrøm R. (1980) A study of the genus Crinum (Amaryllidaceae) in Cameroun. Adansonia, ser. 2 20: 179-198.
Obermeyer A. A. (1963) Hessea tenella. Fl. Pl. Africa 36 ("1964"): t. 1413.
Saitou N., Nei M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molec. Biol. Evol. 4: 406-425.
Salisbury R. A (1866) The genera of plants: a fragment containing part of Liriogamae. John van Voorst, London.
Sambrook J., Fritsch E. F., Maniatis T. (1989) Molecular cloning, Cold Spring Harbor Laboratory, New York.
Shinwary K. Z., Terauchi R., Utech F. H., Kawano S. (1994) Recognition of the New World Disporum section Prosartes as Prosartes (Liliaceae) based on the sequence data of the $r b c \mathrm{~L}$ gene. Taxon 43: 353-366.
Snijman D. A. (1991) Kamiesbergia, a new monotypic genus of the Amaryllideae - Strumariinae (Amaryllidaceae) from the north-western Cape. Bothalia 21: 125-128.
Snijman D. A. (1992) Review of the systematics of the Strumariinae (Amaryllidaceae). Herbertia 48: 52-57.
Snijman D. A. (1994) Systematics of Hessea, Strumaria and Carpolyza (Amaryllideae: Amaryllidaceae). Cape Town, Bolus Herbarium.
Snijman D. A., Perry P. (1987) A floristic analysis of the Nieuwoudtville Wild Flower Reserve, north-western Cape. S. African J. Bot. 53: 445-454.
Swofford D. L. (1993) PAUP: phylogenetic analysis using parsimony, version 3.1.1. Champaign.
Tajima F., Nei M. (1984) Estimation of evolutionary distance between nucleotide sequences. Molec. Biol. Evol. 1: 269-285.
Traub H. P. (1957) Classification of the Amaryllidaceae: subfamilies, tribes and genera. Pl. Life 13: 76-83.
Traub H. P. (1963) The genera of Amaryllidaceae. The American Plant Life Society, La Jolla, Calif.
Traub H. P. (1967) Review of the genus Nerine. Pl. Life 23: 1-32 (Suppl.).
Verdoorn I. C. (1973) The genus Crinum in southern Africa. Bothalia 11; 27-52.
Wojciechowski M. F., Sanderson M. J., Baldwin B. G., Donoghue M. J. (1993) Monophyly of aneuploid Astragalus (Fabaceae): evidence from
nuclear ribosomal DNA internal transcribed spacer sequences. Amer. J. Bot. 80: 711-722.

Addresses of the authors: Katja WeichhardtKulessa, Dietrich Müller-Doblies, Institut für Ökologie und Biologie, Technische Universität Berlin, Franklinstrasse 28/29, D-10587 Berlin,

Germany. Jürgen Schmitz, Deutsches Primatenzentrum, Kellnerweg 4, D-37077 Göttingen, Germany. Thomas Börner, Institut für Biologie (Genetik), Humboldt-Universität zu Berlin, Chausseestrasse 117, D-10115 Berlin, Germany. Ute MüllerDoblies, Paulsenstrasse 47a, D-12163 Berlin, Germany.

