Pushing the barriers of knowledge

Members of the Breaking Barriers research team, Germany, Principal Investigators Professor Cornelius Faber, Dr Bettina Löffler, and Professor Georg Peters describe their research, the importance of understanding pathogen-host interactions on a cellular scale and their ambition to use this knowledge to create new clinical interventions.

To begin, can you summarise the different areas of research that are investigated within the Collaborative Research Centre (SFB) 1009 Breaking Barriers. What is the main goal of this consortium?

GP: Infectious diseases and autoimmune or rheumatic disorders represent enormous medical and economic burdens to society. Common features of such inflammatory processes include their complexity and the frequent involvement of multiple organ systems. New strategies for therapy are urgently needed. Antibiotic therapy for infection is becoming increasingly restricted, mainly due to the development of pathogen resistance. Therapy against autoimmune and rheumatic diseases is still limited to mainly arbitrary suppression of inflammatory cytokines. Central to both infectious and inflammatory diseases are cellular barriers which, in physiological conditions, act to restrict pathogen entry and regulate immune cell surveillance of tissues. The main goal of our SFB 1009 is the targeting of components of cellular barriers for future diagnostic, therapeutic or preventive strategies.

What are the main mechanisms governing the passage of foreign bodies whilst facilitating the transport of necessary signalling molecules and other host substances into and out of cells?

GP: Cellular and associated extracellular matrix barriers fulfil important functions not only by establishing a physical barrier between the exterior and interior but also by coordinating physiological processes at their surfaces and regulating the transport of nutrients, metabolites and even cells between two principally different compartments (outside-inside, blood or lymphatic vessel and surrounding tissue). The entire process of barrier penetration is orchestrated by multiple interactions between the immigrating and barrier forming cells and is crucially modulated by soluble factors that activate or inactivate specific responses of the two cell populations.

Individual research projects are organised into ‘the integrity and cellular penetration of barriers’ and ‘cellular barriers as targets for infection and immune processes’. What is the reason for this classification?

GP: Projects in part A of our SFB 1009 aim to decipher the basic biological principles that underlie the establishment, dynamics and functional complexity of endothelial barriers and the regulation of leukocyte activation in the course of transendothelial cell migration. In part B, the scientific programme projects address questions of pathogen interactions with cellular barriers and their consequences for the development of inflammatory reactions. Altogether, the research programmes of all projects synergistically work on new interventional strategies against inflammatory diseases with substantial innovation and added value potential.

One special feature of your centre is the use of non-invasive imaging technologies, in particular MRI. Can you provide some examples of the research options made possible with this technique?

CF & BL: Using the techniques of bacterial iron-labelling and MRI we developed a model of endocarditis in mice. Using these methods we could monitor the development of endocarditis non-invasively. An endocarditis model in mice is very difficult to perform, and obtaining high resolution MRI of the extremely fast moving structures in the beating heart is a challenge. Furthermore, MRI provides a tool to assess other barriers properties in the organism. By parametric imaging one can assess integrity of the blood-brain barrier, micro vessel density or mean vessel size in the brain, or angiogenesis in solid tumours.
The Collaborative Research Centre 1009 in Münster, Germany, is attempting to elucidate the processes and mechanisms involved in infectious disease and autoimmune disorders. Led by Professor Georg Peters, it is developing new techniques to gain insight into pathogenic interaction with cellular barriers and host inflammation response.

Infectious and autoimmune disorders are two of the biggest burdens on quality of life. These disorders – whether mediated by a foreign pathogen such as bacteria, or caused by a damaging autoimmune response – have several similarities. In the case of infectious disease, the pathogen in question invades and infects the body by passing through physical barriers such as epithelial and endothelial cell layers. The action of each pathogen and its host interactions will depend on the specific biochemical and physiological adaptations of that pathogen, but almost all foreign bodies share the need to cross the same cellular barriers. Once inside the host, most detected pathogens will trigger an immune response which includes inflammation.

The inflammation process is similar in both pathogenic infections and autoimmune disorders. The cellular barriers which attempt to block invading pathogens are also involved in regulating inflammatory processes in both disease types, making cellular barriers a common component in a huge swathe of the global disease burden.

Today, the importance of these cellular barriers in biomedical research and clinical intervention is clear. As such, a large multidisciplinary team from Medical and Biological Faculties of the University of Münster, Germany, is working to elucidate the components and mechanisms of cellular barriers, with the aim of identifying and targeting specific regions of those barriers for diagnostic, therapeutic and preventive strategies.

BARRIERS

Cellular barriers are integral to almost all processes in complex organisms. “In humans, polarised endothelial and epithelial cell layers and their underlying basement membranes are fundamental to the maintenance of normal organ function and tissue homeostasis,” explains the Speaker of the Collaborative Research Centre (SFB) 1009, Professor Georg Peters. While cellular barriers are well-known examples of antibiotic resistant bacteria (for example methicillin-resistant Staph. Aureus - MRSA). As such they often present a serious issue in clinical settings.

The German team is attempting to elucidate the mechanisms which these bacteria employ to overcome host defences and invade tissue. If achieved, they hope to use this knowledge to design therapeutic intervention which overcomes the growing resistance of Staph. aureus to antibiotics. The bacteria are impressively diverse in their strategy to gain access to host tissue: “Staph. aureus disposes of...
破壁赋能

合作研究中心
1009 - 德国研究基金会

目标

合作研究中心1009由17个合作进行的项目组成，涉及48名科学家从16所机构。他们研究的问题涉及细胞屏障功能的基本问题和屏障穿透的基本机制，可能通过免疫细胞或病原体，以及在两者的相互作用中。

关键合作者

Dr. Alexander Zarbock • 教授 Dr. Volker Gerke • PD Dr. Ursula Rescher • 教授 Dr. Carsten Müller-Tidow • 教授 Dr. Thomas Pap • 教授 Dr. Georg Peters • PD Dr. Bettina Löfler • PD Dr. Christina Ehrhardt • 教授 Dr. Stephan Ludwig • 教授 Dr. M. Alexander Schmidt • 教授 Dr. Helge Karch • PD Dr. Alexander M. Kellmann • 教授 Dr. Ulrich Dobrindt • 教授 Dr. Karin Loser • PD Dr. Thomas Vogl • 教授 Dr. Dirk Föll • 教授 Dr. Johannes Roth • 教授 Dr. Sabine Blass-Kampmann • 教授 Dr. Cornelius Faber

资助

德国研究基金会

联系

Funding German Research Foundation

目标

The Collaborative Research Centre 1009 consists of 17 collaboratively working projects with 48 scientists from 16 participating institutions. They address fundamental questions concerning cellular barrier functions and basic mechanisms of barrier penetration by immune cells or pathogens, as well as the interplay between them.

关键合作者

Dr. Alexander Zarbock • Dr. Volker Gerke • Dr. Ursula Rescher • Dr. Carsten Müller-Tidow • Dr. Thomas Pap • Dr. Georg Peters • PD Dr. Bettina Löfler • Dr. Christina Ehrhardt • Dr. Stephan Ludwig • Dr. M. Alexander Schmidt • Dr. Helge Karch • Dr. Alexander M. Kellmann • Dr. Ulrich Dobrindt • Dr. Karin Loser • PD Dr. Thomas Vogl • Dr. Dirk Föll • Dr. Johannes Roth • Dr. Sabine Blass-Kampmann • Dr. Cornelius Faber

资助

German Research Foundation

联系

Dr. Alexander Zarbock • Dr. Volker Gerke • Dr. Ursula Rescher • Dr. Carsten Müller-Tidow • Dr. Thomas Pap • Dr. Georg Peters • PD Dr. Bettina Löfler • Dr. Christina Ehrhardt • Dr. Stephan Ludwig • Dr. M. Alexander Schmidt • Dr. Helge Karch • Dr. Alexander M. Kellmann • Dr. Ulrich Dobrindt • Dr. Karin Loser • PD Dr. Thomas Vogl • Dr. Dirk Föll • Dr. Johannes Roth • Dr. Sabine Blass-Kampmann • Dr. Cornelius Faber

可能改善的MR

Perhaps the most applicable and ergonomic breakthrough recently made by the SFB 1009 is the creation of a technique which allows the in vivo visualisation of real-time bacterial infection. The process, so far limited to murine models, involves tagging bacteria with iron oxide particles. These bacteria are then introduced to the host model. The team is then able to use magnetic resonance imaging (MRI) to identify and track the process of infection in the models without any form of surgical intervention. This represents an impressive step forward with regards to the tools and methodologies available to biomedical research teams across the world. The team has been able to use this technology to build an understanding of infection behaviour, inflammatory and immune responses and the localisation of these processes. Due to the non-invasive nature of this technique the group hope that the technology may soon be transferred and further developed for the application in humans. “The methodology we have developed here can readily be applied to humans, as soon as suitable targeted MR contrast agents for bacteria are available,” explains project researcher Professor Cornelius Faber.

合作

Due to the size of the overarching research project and the complexity of the work in question, collaboration has been essential to the progress achieved by the group. Furthermore, it has been important in securing funding: “The collaborative nature of the research programme is a prerequisite for the funding of a Collaborative Research Centre by the German Research Foundation,” points out Speaker Georg Peters. By engaging researchers of various expertises and bringing them together with one overarching goal, the group has been able to make notable progress, including the development of their new MRI technique – progress that has been dependent on interdisciplinary working.

In addition, the projects being conducted at this and other Collaborative Research Centres in Münster, Germany, represent one of the most holistic and far-reaching approaches to biomedical research in Europe. By tackling a huge scientific question with a multitude of collaborative projects, the SFB 1009 and its researchers are making notable inroads into the elucidation of pathogenic and autoimmune disorders. The future implications of such a large effort are hard to predict, but the provision of a novel MRI technique which might open new doors for scientists across the world, hints at the potential this project holds. In the future, the project leaders and Peters hope that new discoveries and breakthroughs can be translated into real life clinical intervention and that may have beneficial ramifications across a whole range of infectious and autoimmune diseases.