

Abstract Book

First World Conference on Ichthyosis

August 31 – September 2, 2007

Münster, Germany

Organized by Network for Ichthyoses and related keratinization disorders (NIRK) together with Selbsthilfe Ichthyose e.V. and EU-Coordination Action GENESKIN

Contacts: H. Traupe, Münster, Email: <u>traupeh@mednet.uni-muenster.de</u> B. Willis, Münster, Email: <u>brigitte.willis@ukmuenster.de</u> Barbara Kleinow, Email: <u>abcr.kleinow@t-online.de</u> Geske Wehr, Email: <u>diewehrs@t-online.de</u>

Location:

Lecture Hall Department of Dermatology University Hospital Von Esmarch-Str. 58 48149 Münster Germany

	page
Workshop on clinical diversity and diagnostic standardization D. Metze, Münster	
Histopathology of ichthyoses: Clues for diagnostic standardization	19
I. Hausser, Heidelberg Ultrastructural characterization of lamellar ichthyosis: A tool for diagnostic standardization H. Verst. Münster	13
The data base behind the NIRK register: a secure tool for genotype/phenotype analysis V. Oji, Münster	34
Classification of congenital ichthyosis M. Raghunath, Singapore	20
Keretinization disorders and kereting	20
I. Hausser, Heidelberg Ultrastructure of keratin disorders: What do they have in common? M. Arin, Köln	12
Recent advances in keratin disorders E. Sprecher, Haifa Naegeli-Franceschetti-Jadassohn Sydrome: a Keratin Disease	26
P.M. Steijlen, Maastricht	20
Epidermolytic palmoplantar keratoderma with "tono tubular" keratin	
Molecular advances in epidermal differentiation D. Kelsell, London	
Role of connexin isoforms for epidermal differentiation and wound healing L. Bruckner-Tuderman, Freiburg Role of kindlin in human disease and keratinocyte motility	
M. Guerrin, Toulouse Granular keratinocytes transcriptome: Identification and characterisation of new differentiation markers	9
Molecular basis of focal dermal hypoplasia	8
Saturday, September 1, 2007	
Recent advances in gene mapping and in lipid genes	
Mapping genes for nonbullous autosomal recessive congenital ichthyosis: What we know today	7
H.C. Hennies, Köln Functional understanding of mutations in congenital ichthyosis	14
P. Krieg, Heidelberg 12R – Lipoxygenase Deficiency impairs Skin Barrier Function	18
G. Schmitz, Regensburg Apolipoprotein E and lipid traffic within keratinocytes	
H. Shimizu, Sapporo What can we learn from Harlequin ichthyosis? E. O'Toole, London	27
In vitro models for harlequin ichthyosis R. Happle, Marburg	22
The CHILD syndrome revisited: the clinical perspective A. König, Marburg Functional understanding of NSDHL mutations	11
Furopean and international perspective	17
G. Zambruno, Rome EU coordination action GENESKIN Purpose, structure and achievements of GENESKIN	
Orphan diseases and the European Union – what patients and scientists may expect M. Schmuth, San Francisco Structure and sime of Foundation for Johthycein and Polated Skin Types	36
on using and anno or roundation for renergoois and related onit rypes	

page

Therapy of ichthyosis: a challenge in daily practice	
Introduction to the topic: therapy of ichthyosis/general principles and substances	31
Management of ichthyosis: The TOMESA experience A.M. van Steensel, Maastricht Our experience with RAMBAs in treatment of congenital ichthyosis	24 33
A. Vahlquist, Uppsala Results of an ongoing study with Liarozol for lamellar ichthyosis	32
Topical treatment/the patient perspective G. Wehr, Kürten The experience from Germany J. Devidts, Belgium The experience from Belgium F. Minelli, Italy The experience from Italy with special focus on the scalps M. Sandström/M. Olsson, Sveden What can be done for palms and soles	
Experimental therapies M. Braun-Falco, Freiburg Gene therapy for keratinization disorders: what is the current state? J. Chen, D. Roop, Denver Oligonucleotide therapy for keratin disorders H. Traupe, Münster Enzyme replacement therapy of lamellar ichthyosis: the current state	6 30
J. A. McGrath, London Cell therapy approaches: the example of Epidermolysis bullosa	
Sunday, September 2, 2007	
Proteases and keratinization disorders P. Hachem, Brussels Importance of serine proteases for epidermal differentiation	10
A. Taïeb, Bordeaux Insights into Pathogenesis of Ichthyosis in Trichothiodystrophy Syndromes A. Hovnanian, Toulouse Towards functional understanding of Netherton syndrome A. Ishida-Yamamoto.	29
Distinct intracellular transport for different epidermal lamellar body molecules	15
Ichthyoses and the cornified envelope M. Schmuth, San Francisco How do abnormalities in brick constituents cause barrier abnormalities?	26
S. Weidinger, München Genetics of epithelial barrier integrity in atopic diseases	35
Transglutaminase-3 deficient mice: a subtle skin phenotype WK Jacyk, Pretoria	23
Bathing suit ichthyosis, the South African experience	16
Towards functional understanding of bathing suit ichthyosis B. Ahvazi, Bethesda	5
Modelling of transglutaminase-1 and transglutaminase-3: what can we predict?	4

Section: Ichthyoses and the cornified envelope

Author(s):	Karen M. Boeshans and Bijan Ahvazi
	From the X-ray Crystallography Facility/Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-8024;
Title:	Lamellar Ichthyosis: Mutational Insights from a Transglutaminase 1 Model
	The skin stratum corneum is an effective barrier for maintaining
	the internal milieu against the external environment. Malformation of the
	cell envelope (CE) at the cell periphery resulting from mutations of the
	transglutaminase 1 (TGase 1) gene is the cause of some cases of
	lamellar ichthyosis (LI). TGase 1 is an enzyme that cross-links proteins
	within the CE of mature keratinocytes. It is not yet clear how these
	mutations cause LI. A PubMed survey shows 34 TGase 1 missense
	mutation sites involved in LI. Not all of these mutations, however, result
	in loss of in vitro cross-linking ability. We suggest that some mutations
	cause a defect in binding to other proteins and/or to the correct
	anchoring of the enzyme to the cytoplasmic side of the plasma
	membrane. We have identified putative RGD and LVD motifs in TGase
	1, which we propose serve to bind TGase 1 to a family of cell-adhesion
	molecules.
	Hypothesis: Mutations in TGase 1 may cause LI by either a direct
	or indirect loss of in vivo protein cross-linking activity. Indirect loss of
	cross-linking activity may be due to aberrant TGase 1/protein
	interactions, and/or to the prevention of correct binding of the enzyme to
	the plasma membrane.

Section: Ichthyoses and the cornified envelope

Author(s):	K. Aufenvenne, T. Walker, V. Oji, H.C. Hennies, N. Seller, P. Bruckner, H. Traupe
Title:	Towards functional understanding of bathing suit ichthyosis
	Bathing suit ichthyosis (BSI) is described as striking and unique clinical subtype of transglutaminase-1 deficient lamellar ichthyosis (LI type 1) with large dark-grey or brownish scales restricted to the bathing suit areas. Recently, in a group of ten individuals of independent families we identified new mutations in the <i>TGM1</i> gene which differ from those which can be found in patients with generalized lamellar ichthyosis. Previous clinical analysis, atomic modelling and immunohistochemical studies
	suggest a temperature depending activity of the identified <i>TGM1</i> mutations in BSI patients. To further elucidate the molecular basis of this unusual phenotype we performed in situ mutagenesis studies and expressed eleven mutations in HEK 293 cells. Eight were only identified in BSI patients, three had previously been found in patients with generalized lamellar ichthyosis due to transglutaminase-1 deficiency. Wildtype TGase-1 served as a control. To analyse TGase-1 activity we performed a fluorimetric assay at different temperatures ranging from 21°C to 45°C. The presented data show that the recombinant proteins including BSI-mutations were less active than the wildtype protein and show a shift in temperature-optimum from 37°C/39°C to 31°C/33°C. We suggest that TGase-1 proteins including BSI-mutations in comparison to the wildtype TGase-1 show less thermal stability. By use of circulardicroism (CD)-spectroscopy with four selected mutations and the wildtype TGase-1 protein we want to elucidate the mechanism of temperature sensitivity. These investigations are currently in process.

Section: Experimental therapies

Author(s):	J. Chen, D. Roop, Denver
Title:	Oligonucleotide therapy for keratin disorders
	A number of genodermatoses are caused by keratin gene mutations.
	Epidermolytic hyperkeratosis (EHK), also known as bullous congenital
	ichthyosiform erythroderma (BCIE), is a dominant form of ichthyosis
	caused by point mutations in keratin 1 or keratin 10. Using a "knock-in"
	approach, our laboratory successfully generated an inducible mouse
	model for EHK, which accurately mimicked this disease at both the
	genetic and clinical levels. This mouse model has not only provided
	insights into the mechanisms that cause various clinical presentations of
	this disease, it also serves as in vivo preclinical model to test novel
	therapeutic approaches for this disorder. Among several potential
	therapeutic strategies, selective suppression of expression of mutant
	keratins with RNAi has the advantages of high specificity, efficiency and
	potential trans-epidermal delivery capability. siRNA oligonucleotides
	were able to inhibit the expression level of mutant K10 transcripts in cell
	lines. Using a lentiviral system, we successfully delivered EHK-specific
	siRNA to primary keratinocytes. We are currently assessing whether
	infected keratinocytes isolated from EHK mice, which constitutively
	express the mutant K10-specific siRNA, will suppress the EHK
	phenotype when grafted onto nude mice.

Author(s):	Judith Fischer , Paris
Title:	Mapping genes for (nonbullous) autosomal recessive congenital ichthyosis ARCI: What we know today
	Ichthyoses are severe congenital chronic skin diseases. Around 40
	different forms of ichthyoses have been described to date, including
	autosomal dominant, autosomal recessive (ARCI) and X-linked forms.
	ARCI are clinical and genetically heterogeneous génodermatoses which
	can be classified in two groups: non-syndromic or primary ichthyoses;
	and syndromic ichthyoses which are associated with extracutaneous
	features.
	In non-syndromic recessive ichthyoses several localizations have been
	reported: LI1 (MIM 242300) on chromosome 14q11 (Russel et al, 1994);
	LI2 (MIM 601277) on chromosome 2q33-35 (Parmentier et al, 1996); LI3
	(MIM 604777) on chromosome 19p12-q12 (Fischer et al, 2000);
	nonlamellar, nonerythrodermic congenital ichthyosis NNCI (MIM 604781)
	on chromosome 19p13.1-p13.2 (Virolainen et al 2000); LI5 (MIM
	606545) also known as NCIE1 (MIM 242100) on chromosome 17p13
	(Krebsova et al 2001) and on chromosome 5q33 (Lefèvre et al 2004).
	Six genes of these loci have been identified to date: transglutaminase 1
	(<i>TGM1</i>) for LI1 (Huber et al, 1995; Russel et al, 1995) two lipoxygenases
	(ALOXE3 and ALOX12B) for LI5/NCIE1 (Jobard et al, 2002) on
	chromosome 17 (MIM 606545), ABCA12 for LI3 and the more severe
	harlequin ichthyosis (Lefèvre et al, 2003; Kelsell et al 2005, <u>Akiyama M</u>),
	ichthyin (Lefèvre et al 2004) on chromosome 5, and Cyp4F22 (Lefèvre
	et al, 2006) for LI3.

Section: Recent advances in gene mapping and in lipid genes

Section: Molecular advances in epidermal differentiation

Happle	Idolf
Title: Deficiency of PORCN, a regulator of Wnt signaling, causes focal of hypoplasia	ermal
Focal dermal hypoplasia (FDH, Goltz syndrome, MIM 305600) is linked dominant, male-lethal, multisystem birth defect affecting tis ectodermal and mesodermal origin. The phenotype is characteri widespread lesions of dermal hypoplasia or even aplasia that m rise to herniation of the underlying fatty tissue. These erythem hyperpigmented or yellowish skin changes tend to be arranged all lines of Blaschko, suggesting mosaicism. Another major diagnos noted on X-rays is longitudinal striation of the long bones, li hinting to functional mosaicism. Associated features include pa linear areas of hairlessness, periorificial papillomas, hypopla aplasia of bones resulting in asymmetric appearance of the face a body, syndactyly, coloboma, and microphthalmia or ur anophthalmia. In addition, hypodontia or oligodontia, hypoplasia enamel, hearing loss, myelomeningocele, bifd ureter, horseshoe omphalocele or papillomatosis of the larynx may be found. Using a stepwise, generally applicable approach employing i) mapping of FDH in rare familial cases, ii) comparative g hybridization on custom made high resolution arrays (HR-C/ search sporadic cases for small deletions in candidate chrom areas associated with this Mendelian trait, iii) point mutation ana genes highlighted by overlapping deletions, we identify <i>PORCN</i> , in Xp11.23, as the gene mutated in FDH. Focusing CGH by indep methods such as genetic mapping eliminates ambiguities whict arise from the wealth of copy number variants in the human g unrelated to the phenotype under study. Contiguous gene delel stop mutations affecting <i>PORCN</i> result in loss of function of this p O-acyltransferase, crucial for cellular export of WNT signaling p Hence, FDH is a human developmental disease caused by a di WNT signal production. The defect is detectable at cellula Extreme skewing of X-inactivation or postzygotic mosaicism redu deleterious effect of mutations in female patients. Due to the sev the PORCN-defect in cells with active mutant X-chromosome, ef missing nehgbouring genes in contiguo	an X- sues of zed by ay give natous, ong the tic sign kewise tchy or isia or and the ilateral of the kidney, genetic enome GH) to osome lysis in ocated endent enome ions or utative roteins. effect in level. ces the erity of red by

Section: Molecular advances in epidermal differentiation

Author(s):	Eve Toulza, Nicolas Mattiuzzo, Marie-Florence Galliano, Nathalie Jonca, Carole Dossat, Daniel Jacob, Antoine de Daruvar, Patrick Wincker, Guy Serre and Marina Guerrin
Title:	Granular keratinocyte transcriptome : identification and characterisation of new differentiation markers
	A large-scale analysis of the transcriptome of human granular
	keratinocytes purified from healthy epidermis is expected to contribute to
	the identification of genes important for barrier function. Purified granular
	keratinocytes obtained by iterative incubations of pieces of human
	epidermis with trypsin were used to generate mini-cDNA libraries using
	the ORESTES method. 22,585 expressed sequence tags (ESTs) were
	produced that matched 3,387 genes. The relative expression of 73 of
	them in the basal and granular layers was analysed by quantitative RT-
	PCR. Among these, 35 were identified as new, highly specific markers of
	granular keratinocytes. This work led to the characterization of the
	DMKN and A2ML1 genes. We also identified a gene encoding a new
	protease as well as protease inhibitors. Moreover, we identified LIPK,
	LIPM and LIPN, three new lipase genes potentially encoding secreted
	products. These data increase the present knowledge of genes
	responsible for the formation of the skin barrier that might constitute new
	candidates for genodermatoses of unknown origin.

Section: Proteases	and	keratinization	disorders
---------------------------	-----	----------------	-----------

Author(s):	Jean-Pierre Hachem
Title:	Importance of serine proteases for epidermal differentiation
	Disruption of the permeability barrier stimulates a repair response that
	leads to the restoration of barrier function. In addition to other family
	types of proteases, the stratum conreum (SC) contains a multitude of
	serine proteases (SP;), their inhibitors and cells of the stratum
	granulosum (SG) express the protease activated receptor (PAR2). Thus
	SC/SG could crosstalk through the activation of PAR2 enabling serine
	protease (SP) signaling within the viable layers of the epidermis. We
	addressed the role of SP/PAR2 signaling in both hairless and PAR2
	knockout (ko) mice. We found that PAR2 activation/inhibition (i.e. ko
	animals and SP inhibitors treated mice) regulates epidermal barrier
	recovery and lamellar body secretion . Yet, the acute removal of the SC
	by tape stripping (TS), which increases SP/PAR2 activation, induces a
	rapid wave of cornification necessary for the formation of the newly lost
	corneocytes. Inhibition or absence of PAR2 delays the cornification
	phenomenon occurring after TS as assessed by TUNEL staining and
	caspase 14 activation. Therefore SP signaling through PAR2 plays a key
	role in acute barrier response to stress by the rapid delivery lamellar
	bodies to the SC and production of new corneocytes ensuring the
	integrity of the mortar and brick.

Section: Recent advances in gene mapping and in lipid genes

Author(s):	Rudolf Happle , Marburg (Germany)
Title:	The CHILD syndrome revisited: the clinical perspective
	The acronym CHILD stands for Congenital Hypoplasia with Ichthyosiform nevus and Limb defects. A hallmark of this X-linked dominant, male-lethal phenotype is the CHILD nevus that shows several peculiar features. Ipsilateral extracutaneous involvement may affect the bones, lung, kidney, heart and brain. During the first months of life, x- rays may show epiphyseal stippling ("chondrodysplasia punctata") The inflammatory lesions of CHILD nevus may wax and wane and are covered with waxy, yellowish scales. The nevus either exclusively or predominantly involves one side of the body and shows two different patterns of distribution. In more severe cases there is a striking lateralization diffusely affecting one side of the body with a strict midline demarcation. This unique pattern of lyonization may tell us something about human embryogenesis. On the other hand, lesions may follow Blaschko's lines. Often both patterns are present and intermingled. Another clinical peculiarity of CHILD nevus is a marked affinity to the body folds (ptychotropism). Histopathological changes are reminiscent of psoriasis, but a distinguishing feature is the presence of foamy, lipid- laden histiocytes in the dermal papillae ("verruciform xanthoma"). On EM examination vesicular structures are noted in the horny layer. – In cases of CHILD syndrome, historical misdiagnoses include ILVEN, "epidermal nevus syndrome of Solomon", X-linked dominant chondrodysplasia punctata, psoriasis, or "verruciform xanthoma". Conversely, CHILD syndrome has erroneously been diagnosed in a case of unilateral Conradi-Hünermann-Happle syndrome Today, molecular analysis has clarified the following points: i) On rare occasions, female carriers may be found to be clinically healthy, which can be explained by extreme lyonization; ii) by way of exception, a bilateral, almost symmetrical involvement may be observed; iii) many affected women may show minimal involvement in the form of one dystrophic fingernail or a small inflammatory lesion measuring 3 cm only. In fac

Section: Keratinization disorders and keratins

Author(s):	Hausser, Ingrid, Dermatology Department, University Clinic Heidelberg, Germany
Title:	Ultrastrastructure of keratin disorders: What do they have in common?
	All epithelial cells are equipped with a cell-type specific cytoskeleton
	network of intermediate filaments composed of the large group of
	keratins. In epidermal keratinocytes they are organized in thick bundles.
	The dynamic cytoskeleton scaffolding process during differentiation is
	supported by cell adhesion structures and modification as phosphory-
	lation. Directly gene-dependent ultrastructural markers of mostly domi-
	nant epidermal disorders related to main filament-forming keratins reveal
	a breakdown of the obviously indispensable scaffold that maintains cell
	and tissue integrity and provides mechanical strength to epithelia and
	especially epidermis. Examples are rupture or non-assembly of basal
	keratins (in epidermolysis bullosa simplex); pathognomonic aggregations
	and clumping of tonofilaments in basal layer (epidermoly-sis bullosa
	Dowling-Meara) or suprabasal layers (epidermolytic hyperkeratosis);
	unusual tubular tonofilament conformation (special type of palmoplantar
	keratoderma); pronounced cytolysis (ichthyosis bullosa Siemens);
	perinuclear shell formation of variable density (ichthyosis hystrix Curth-
	Macklin and congenital reticular ichthyosiform erythroderma). Monilethrix
	is the only hair shaft defect related to mutation in keratins identified so
	far. The consequences of disturbances in the highly differentiation-
	specific keratin cytoskeleton are tissue fragility and/or keratinization
	disorders with compensational hyperkeratosis.

Author(s):	Hausser, Ingrid, Dermatology Department, University Clinic Heidelberg, Germany
Title:	Ultrastructural characterization of lamellar ichthyosis: a tool for diagnostic standardization
	Based on their peculiar and often highly specific ultrastructural features
	various types of keratinization disorders can be delineated as distinct
	nosological entities. Lamellar ichthyosis or ichthyosis congenita
	comprise a heterogeneous group of nonbullous conditions with
	congenital and generalized onset of scaling and hyperkeratosis. By
	systematic investigation of ultrastructural aberrations it was evident that
	heterogeneity is even larger than expected from the clinical features and
	light microscopic histopathology alone. Four subgroups of autosomal re-
	cessive lamellar ichthyosis display specific ultrastructural markers which
	in part already elucidated pathomechanistic pathways, for example mal-
	formation of the cornified cell envelope and disturbance of intercellular
	lipids in the stratum corneum. EM-type I is characterized by numerous
	lipid droplets within the lamellae of the hyperkeratotic horny layer; EM-
	type II by groups of polygonal clefts within the horny lamellae, repre-
	senting remnants of cholesterol clefts; EM-type III by irregular vacuolic,
	vesicular and membraneous structures within the granular layer, potent-
	ially representing aberrant lamellar bodies; EM-type IV by lentiform swol-
	len areas within the horny lamellae and perinuclearly with the granular
	layer containing masses of curved membranes. Substantial number of
	cases as well as rare cases of autosomal-domimant lamellar ichthyosis,
	however, show morphologically unspecific disturbance of cornification.

Section: Workshop on clinical diversity and diagnostic standardization

Author(s):	Hennies HC, Eckl KM, Alef T, Kurtenbach J, Torres S, Nätebus M, Preil ML, Küster W, Traupe H, Haußer I, Metze D, Lestringant GG, Krieg P
Title:	Functional understanding of mutations in autosomal recessive congenital ichthyosis (ARCI)
	Ichthyosis is both clinically and genetically a highly heterogeneous
	phenotype. We have been following various approaches to investigate
	the genetic heterogeneity and to molecularly characterize the pathways
	involved. This has included two major approaches: the identification of
	further genes involved in disorders of keratiniziation and the characteri-
	zation of the cellular mechanisms leading to the phenotype of ichthyosis
	caused by mutations in epidermal lipoxygenases. For the identification of
	new genes, we have concentrated on a syndromic form of ichthyosis
	also including follicular atrophoderma and hypotrichosis, which has been
	analysed in two consanguineous families by genome-wide homozygosity
	mapping. In order to further characterize the pathophysiology of ARCI,
	we have analysed the role of the epidermal lipoxygenase pathway.
	Mutations in ALOX12B and ALOXE3 were expressed after site-directed
	mutagenesis, and mutant enzymes analysed in vitro. We have estab-
	lished 3D organotypic skin models (i.e., epidermis equivalents) to study
	the suprabasal layers including the stratum corneum. The analysis of the
	mutation spectrum in ARCI deals with the question of genotype/pheno-
	type correlation in close collaboration with the clinical projects of the
	network for ichthyoses and related keratinization disorders. These
	approaches will further contribute to the understanding of epidermal
	differentiation and give us the chance for novel approaches into therapy.

Section: Recent advances in gene mapping and in lipid genes

Abstract for the First World Conference on Ichthyosis of the network NIRK

Author(s):	Akemi Ishida-Yamamoto
Title:	Distinct intracellular transport of different epidermal lamellar body molecules
	Epidermal lamellar bodies (LBs) transport and secrete various
	molecules, including lipids, proteases, protease inhibitors and structural
	proteins. LBs begin to appear in the upper spinous layer of the epidermis
	and are most prominent in the granular cell layer. LBs collect at the
	apical surface of the upper granular cells, fuse with the cell membrane,
	and extrude their contents into the extracellular space. In my talk, I
	would like to review what we know about the transportation of LB-
	molecules and its relevance to ichthyosis.
	It is generally believed that LBs originate from the trans-Golgi network
	(TGN). Our previous studies have shown that each LB-molecule is
	synthesized sequentially and transported in distinct granules within
	tubulovesicular structures. Presently, very little is known regarding the
	post-Golgi trafficking routes of LBs. A member of the small GTPase Rab
	protein family Rab IT is found at high levels in recycling endosomes and
	is expressed in the epidermis. We have recently found that Rabin is
	Associated with the FGN and tubolovesicular structures carrying validus
	trafficking from the TGN to the plasma membrane. It also suggests that
	there is a close relationship between I Bs and recycling endosomes
	I B-related ichthyosis has been discovered recently. Abnormalities in I B
	cargoes result in severe skin diseases such as Netherton syndrome and
	the <i>ichg</i> phenotype in mice. These are caused by decreased activities of
	LEKTI and cystatin M/E, respectively. Abnormal transportation and/or
	secretion of LBs cause ichthyosis seen in CEDNIK syndrome and in
	ARC syndrome.
	-

Section: Proteases and keratinisation disorders

Section: Ichthyoses and the cornified envelope

Author(s):	W K Jacyk						
Title:	Bathing Suit Ichthyosis, the South African experience						
	Bathing suit Icthyosis(BSI) is a unique clinical variant of autosomal						
	recessive congenital ichthyosis(ARCI), first described in South Africa in						
	the 70's. Recently a group of 13 patients with this condition has been						
	reported from Pretoria, South Africa. This particular form of ARCI has						
	also been found in individuals of European and Morrocan descent.						
	Herein the clinical and histopathological findings in 19 South African						
	patients with BSI are presented. Genetic studies performed in the						
	meantime in 8 South African cases included in this presentation						
	disclosed a homozygous missense mutation, pR315L in						
	transglutaminase 1. This particular mutation has not been found in the						
	series of 10 patients with BSI recently reported by Oji et al.						

Section: Recent advances in gene mapping and in lipid genes

Author(s):	König A, Achatz B, Leveleki L, Bornholdt D, Happle R, Grzeschik KH.						
Title:	Functional understanding of NSDHL mutations						
	CHILD syndrome (Congenital Hemidysplasia with Ichthyosiform nevus and Limb Defects) is caused by mutations in the <i>NSDHL</i> gene at Xq28 (NADPH steroid dehydrogenase-like protein) encoding a 3-beta- hydroxysteroid dehydrogenase. This enzyme is involved in the post- squalene cholesterol biosynthesis, and in order to elucidate its pathogenetic role in CHILD syndrome the mutational spectrum has been analyzed in more than 30 affected patients. In addition, we performed complementation studies in yeast defective for ERG 26, homologous to NSDHL, using the human wild type or mutated enzyme. Thirdly, subcellular localization of human wild type NSDHL and mutants was investigated in localisation studies using transient transfection of COS- 7-cells with GFP- <i>hNSDHL</i> -constructs. <u>Results</u> : Mutational analyses have revealed a broad spectrum of point mutations (nonsense and missense mutations) as well as deletions. So far, no genotype-phenotype correlation can be observed, i.e. point mutations at various regions of the gene are as fatal as large or complete deletions of the gene. Interestingly, missense mutations detected in CHILD patients do not affect domains required for enzyme function. However, complementation studies in yeast suggest dominant negative action of hNSDHL missense mutations, whereas the human wild type enzyme can complement the ERG 26 defect. On the subcellular level, wild type hNSDHL localizes on the endoplasmic reticulum and around lipid droplets known to be involved in cellular vesicle transport. Several missense mutations are shown to loose this capacity. <u>Conclusion</u> : Maldistribution of NSDHL may impair the vesicular transport or cholesterol biosynthesis even if the catalytic domains are not affected. Both phenomena could affect the sonic hedgehog-signaling pathway. This adds to the pathogenetic concept because i) epidermal differentiation is disturbed, as demonstrated by abnormal lipid vesicles in affected skin of CHILD patients and ii) defective hedgehog signalling during embryogenesis is likely to ca						

Abstract for the First World Conference on Ichthyosis of the network NIRK

Section: Recent advances in gene mapping and lipid genes

Author(s):	Nikolas Epp ¹ , Silvia de Juanes ¹ , Gerhard Fürstenberger ¹ , Karsten Müller ¹ , Silvia de Juanes ¹ , Michael Leitges ² , Ingrid Hausser ³ , Florian Thieme ⁴ , Gerhard Liebisch ⁴ , Gerd Schmitz ⁴ , Hans –Jürgen Stark ⁵ and Peter Krieg¹ ¹ Division of Genome Modifications and Carcinogenesis, German Cancer Research Center, D- 69120 Heidelberg, Germany; ² The Biotechnology Centre of Oslo, University of Oslo; N-0317 Oslo, Norway; ³ Dermatological Department, University Clinic, D-69115 Heidelberg, Germany; ⁴ Institute of Clinical Chemistry, University of Regensburg, D-93042 Regensburg, Germany; ⁵ Division of Genetics of Skin Carcinogenesis, German Cancer Research Center, D-69120 Heidelberg, Germany
Title:	12R-Lipoxygenase Deficiency impairs Skin Barrier Function
	12R-lipoxygenase (12R-LOX) and the epidermal LOX-3 (eLOX-3) are members of the epidermal subfamily of mammalian LOX and are preferentially expressed in human and mouse skin. Both enzymes are part of a novel eicosanoid pathway involved in terminal differentiation in skin. This view is supported by recent studies showing that inactivating mutations in 12R-LOX and eLOX-3 are linked to the development of autosomal recessive congenital ichthyosis (ARCI) a skin disease associated with hyperkeratosis and impaired barrier function. To analyse the impact of 12R-LOX in the establishment of the epidermal barrier and to investigate its physiological role we generated a 12R-LOX-deficient mouse model by using the Cre/LoxP system. Targeted inactivation of 12R-LOX in mice results in early neonatal death which is due to a severely impaired inwards and outwards permeability barrier function. Loss of barrier function occurs without alterations in proliferation and stratified organization of the keratinoyctes but is associated with ultrastructural anomalies in the upper granular layer suggesting perturbance of the assembly/extrusion of lamellar bodies. Cornified envelopes (CE) from skin of 12R-LOX-deficient mice show increased fragility. In addition, lipid analyses revealed an aberrant composition of CE bound lipids in 12R-LOX ^{+/-} mice, which are essential for normal barrier function. Furthermore, processing of profilaggrin to filaggrin is impaired indicating that both lipid metabolism as well as protein processing is affected by 12R-LOX deficiency. While neonatal 12R-LOX ^{+/-} mouse skin did not display an obvious clinical phenotype, transplanted 12R-LOX ^{+/-} mouse skin resembled that seen in ichthyosis, with epidermal hyperproliferation, acanthosis, hypergranulosis and marked hyperkeratosis. The data document a crucial role of 12R-LOX in the establishment of the epidermal barrier function. Moreover, 12R-LOX knockout mice may be a useful model for ARCI forms associated with an impaired LOX

Section: Workshop on	clinical diversity	and diagnostic	standardization
----------------------	--------------------	----------------	-----------------

Author(s):	D. Metze, Münster						
Title:	Histopathology of ichthyoses: Clues for diagnostic standardization Ichthyoses are a heterogeneous group of genetic diseases that present						
	with a generalized and permanent scaling with or without erythroderma.						
	The histologic diagnosis of ichthyotic skin disorders is a problem since						
	valid criteria have not been established so far. In a large series of						
	ichthyotic skin disorders we could define major histologic patterns that						
	reliably contribute to the diagnose. In addition, new histochemical and						
	immunohistochemical tools substitute time consuming genetic						
	investigations.						

Section: Workshop on clinical diversity and diagnostic standardization

Author(s):	V. Oji and H. Traupe, Münster						
Title:	How to classify ichthyosis in the future?						
	Ichthyoses form a heterogeneous group of genetically determined cornification disorders characterized by generalized scaling of the skin. Common types such as ichthyosis vulgaris and X-linked recessive ichthyosis manifest after birth. In contrast, rare congenital ichthyoses (CI) are diseases, which at birth typically present collodion membrane or ichthyosiform erythroderma. Syndromic ichthyoses exhibit a variety of associated non-cutaneous symptoms. Much progress on defining the molecular causes of ichthyoses has been made during the last 10 years. This success was recently highlighted by ichthyosis vulgaris, which really became - so to say - a "filaggrin-ichthyosis," or in Harlequin ichthyosis, which is caused by nonsense mutations in <i>ABCA12</i> , yet certain missense mutation in this gene also underlie "lamellar ichthyosis type 2". Interesting new molecular findings also concern the subgroup of congenital bullous types of ichthyoses" or "epidermolytic hyperkeratoses". In the literature, e. g. in the OMIM database, some examples of an ichthyosis classification – in line with the "up-to-date" molecular findings – can be found. However, we are lacking a uniform consensus for a classification, which is useful from the clinical point of view and an easy nomenclature for the geneticist, e. g. it should be possible to include new disorders/gene entries into this classification in the future, yet respecting the mode of inheritance as well as the genotype/phenotype correlation. Distinct morphological signs such as "lamellar scaling" versus "ichthyosiform erythroderma" still provide important criteria for the clinician. We would like to propose a modified clinical and molecular ichthyosis classification, which should be discussed during the meeting, and then together would like to propose a consensus nomenclature, that can be used by the community. As a starting point for discussion we provide the following table, which first differentiates between "non-congenital" and "congenital" ichthyosis.						

			ICH	ITHYOSIS	
NON-CONGENITAL		CONGENITAL			
ISOLATED types	SYNDROMES	ISOLATED types		ISOLATED types	SYNDROMES
	1		AUTOSOMA	L RECESSIVE CONGENITAL ICHTHYOSIS	
Ichthyosis vulgaris (IV)	Refsum syndrome (RS)	ABCA12	ARCI 1a	Harlequin ichthyosis (HI)	Dorfman Chanarin syndrome (DCS)
			ARCI 1b	erythrodermic lamellar ichthyosis (ELI)	
X-linked recessive ichthyosis (XRI)	multiple sulfatase deficiency (MSD)	TGM1	ARCI 2a	generalized lamellar ichthyosis (GLI)	Gaucher syndrome type 2 (GD2)
			ARCI 2b	bathing suit ichthyosis (BSI)	Netherton syndrome (NTS)
			ARCI 2c	self-healing collodion baby (SHBC)	Sjoegren Larsson syndrome (SLS)
		ALOXE3	ARCI 3a	congenital ichthyosiform erythroderma (CIE)	Trichothiodystrophy (TTD)
		ALOX12	ARCI 3b		Conradi-Hünermann-Happle syndrome
					(CDPX2)
		FLJ39501	ARCI 4	? (congenital ichthyosis with fine/focal scaling)	CHILD syndrome
		ichthyin	ARCI 5	congenital ichthyosiform erythroderma (CIE)	IFAP syndrome
		9q33-34	ARCI 6	ichthyosis prematurity disease (IPD)	
			BULLOUS ICHTHYOSIS = EHK		
		KRT1	KRT1 EHK 1a bullous ichthyosis with PPK		
			EHK 1b	ichthyosis hystrix Curth Macklin	
		KRT10	EHK 2a	bullous ichthyosis without PPK	
			EHK 2b	annular epidermolytic ichthyosis	
		KRT2A	EHK 3	ichthyosis bullosa of Siemens (IBS)	
			AUTOSOM	AL DOMINANT LAMELLAR ICHTHYOSIS	
		LOR	ADLI 1	Loricrin keratoderma	
		?	ADLI 2	ADLI with PPK	

Section: Recent advances in gene mapping and in lipid genes

Author(s):	Thomas A, O'Toole EA, Kelsell DP						
Title:	In vitro models of harlequin ichthyosis						
	Harlequin ichthyosis (HI) is the most severe form of autosomal recessive congenital ichthyosis. Using SNP chip technology and subsequent sequencing, we have previously shown that mutations in the ABCA12 [(ATP)-binding cassette transporter] gene underlie HI and to date over 50 patients analysed have mutations in this gene. Additionally complex mutations, such as a heterozygous whole exon deletion and a multiple exon duplication, have been identified via CGH oligo array and validated by multiplex PCR. The presence of these complex mutations shows the need for thorough investigation when considering pre-natal testing for HI. Our studies also show that there are ethnic-specific mutations in individuals of Pakistani, White British and Balkan origin.						
	In order to elucidate the role of ABCA12 in epidermis, siRNA mediated knockdown was performed in keratinocytes. These cells were used to create 3D organotypic co-culture skin models that mirror many of the phenotypic changes observed in HI patient skin including abnormal lipid content and thickened epidermis. Evidence suggests ABCA12 is involved with lipid transport (Glucosylceramides) in the lamellar granule network of the skin. Additionally, our results from immunostaining experiments on HI skin and the organotypic skin model show that the programme of epidermal differentiation is severely impaired compared to control skin. Markers of late epidermal differentiation such as Keratin 2e, involucrin and transglutaminase appear in the lower and often basal layers of the skin suggesting loss of ABCA12 triggers early terminal differentiation but without the signals to form the cornified envelope. These data suggest the abnormal skin barrier function related to abnormal lamellar granule formation and subsequent abnormal lipid transport seen in HI skin may, in part, be due to the dysregulated keratinocyte differentiation programme driven by absent ABCA12.						

Section: Ichthyoses and the cornified envelope

Title: Transglutaminase-3 deficient mice: a subtle skin phenotype	
A major biological function of transglutaminases is the cova	lent
crosslinking of epidermal proteins to form and maintain the skin ba	rier.
Seven transglutaminases are present and active in different layers o	the
skin. To address their <i>in vivo</i> function we generated mice lacking	G3.
Such mice show a hair phenotype, but have after birth no obvious de	fect
in the skin barrier function. At embryonal day 17.5 we detected	d a
delayed barrier formation in the knock out mice, which had recovered	d at
day 18.5. The TG3 deficient mice showed alterations in hair forma	ion.
The fur and whiskers had a curled appearance and show ultrastruc	ural
irregularities. The structural hair proteins show an increased solut	ility,
reflecting an altered crosslinking of hair structural proteins.	

Author(s):	Preil ML, Bad Salzschlirf
Title:	Management of Ichthyosis: The TOMESA experience
	The principles of the Ichthyose therapy are: bathing, mechanical scale removal and local therapy with creams. The TOMESA clinic is experienced in 10 years of highly individualized therapy management of patients with Ichthyoses and related keratinization disorders. We offer a therapy plan with steam bath, bathing in death sea salt, medical bathes with sodium bicarbonate, rice, corn and wheat starch for soaking. Afterwards mechanical scale removal with different tissues like micro fibre, special silk from china or morocco, pumice or volcano stones. Lubricating topical treatment, individual chosen and optimized with and keratolytic ingredients like urea pura, polyethylene glycol, lactate, glycerine etc are used. Additional special treatment of the scalp and the face by experienced team is offered. Ichthyoses: There's a lot, you can do!

Section: Workshop on clinical diversity and diagnostic standardization

Author(s):	JCC Ho, HC Hennies, YC Chen, C Lee, SH Tan, YC Giam, I Hausser,
	KS Harve, H Traupe, M Ragnunath
Title:	Congenital Ichthyosis in South East Asia
	We present the first study of South East Asian patients (four patients, one Indian and two Malay families) with lamellar ichthyosis. All 4 presented as collodion baby at birth, and had cornea-threatening ectropion that required systemic retinoid treatment from the first year of life. All showed palmoplantar keratoderma and generalized plate-like ichthyosiform scaling with minimal erythema, with one patient showing a milder phenotype with scaling confined to forehead, sides of the trunk, flexures and wrists. Typical ultrastructural features included cholesterol Clefts within horny layer in one patient (EM-type II), numerous lipid droplets (two siblings, EM-type I) and, in the mildest case, membranous structures and abnormal vesicular complexes in keratinocytes (EM-type III). We identified six novel TGM1 mutations in all our LI patients (Gly278Glu and Ser358Gly), (homoz. Glu285Lys, plus homoz. *4T>C), and, in the mildest case (Thr131 Ala and intronic 1646-8A>G). Our findings indicate that also in patients of Indian and Malay descent TGM1 mutations are responsible for LI. This correlated well with the absence or reduction of TGase1 activity in the granular layer. In the mildest case, the effects of the intronic putative splice defect is unknown yet, while the Thr131Ala mutation lies in the N-terminal β-barrel region of the enzyme. In contrast, the other three patients harbour mutations that affect the catalytic site of the enzyme. In this regard, Gly287Arg was described earlier to stall enzyme activity completely. We therefore assume that our novel mutation Gly278Glu has a similar effect. It including prenatal diagnosis for future pregnancies and prepare the ground for gene and enzyme substitution therapies. Singapore is a microcosm of South-East Asia, with her population comprised largely of descendants from Malaysia, the Indonesian archipelago, south India as well as the southern provinces of China. The Chinese constitute the majority (76%), followed by the Malays (13%) and Indians (8%). However, Chinese patient

Section: Ichthyoses and the cornified envelope

Author(s):	Matthias Schmuth, Mary Williams, Peter Elias
Title:	How do abnormalities in corneocyte constituents cause barrier abnormalities?
	Barrier abnormalities in the disorders of cornification can result from defects in multiple different tissue and cell components. Because the permeability barrier resides in the extracellular lipid-enriched domains of the stratum corneum, it was anticipated that disorders of lipid metabolism would perturb the lamellar membrane structures of the extracellular domains and would result in a defective barrier. Unanticipated was the finding that inherited disorders of corneocyte proteins also exhibit, to varying degrees, an impaired permeability barrier. In some instances, the pathogenetic sequence from the gene defect to disease expression is quite straightforward. In others, a more complex sequence is operative. We have examined the correlation between genetic defect, morphological, biochemical, and functional parameters in four corneocyte disorders, lamellar ichthyosis (LI), loricrin keratoderma (LK), ichthyosis vulgaris (IV), and epidermolytic hyperkeratosis (EHK). In both LI and LK, a defective cornified envelope results in impaired scaffold function, leading to fragmented and foreshortened lamellar membrane, but compensatory cross-linking of alternate cornified envelope precursors (which cannot occur in LI) ameliorates the clinical consequences of loricrin mutations in LK. The relationship between the defective organization of extracellular lamellar membrane structures. In contrast, in EHK abnormal keratins impair lamellar body exocytosis, again provoking a barrier abnormality via a defect in the extracellular matrix. Thus, in each of these disorders, the defective intracellular mechanisms.

Section: Recent advances in gene mapping and in lipid genes

Author(s):	Hiroshi Shimizu , Hokkaido University Graduate School of Medicne, Sapporo, Japan
Title:	What can we learn from harlequin ichthyosis?
	We showed serious defects in the epidermal keratinocyte lipid transporter ABCA12 are known to result in a deficient skin lipid barrier, leading to harlequin ichthyosis (HI) (Akiyama et al, J Clin Invest 2005). These finding allowed us to provide early DAN based prenatal diagnosis of HI (Akiyama et al, J Invest Dermatol, 2007). Transplanted keratinocytes from patients with HI reconstitute HI skin lesions in immunodeficient mice. ABCA12 is highly expressed in fetal skin and suggest that ABCA12 may play an essential role under both the wet and dry conditions, including the dramatic turning point from a wet environment of the amniotic fluid to a dry environment after birth (Yamanaka et al, Am J Pathol 2007).

Abstract for the First World Conference on Ichthyosis of the network NIRK

Section: Keratinization disorders and keratins

Author(s):	 Jenny Lugassy^{1,2}, John A McGrath³, Peter Itin⁴, Akemi Ishida-Yamamoto⁵, Kristen Holland⁶, Susan Huson⁷, John DiGiovanna⁸, Dani Bercovich⁹; Dan Geiger¹⁰; Julian Verbov¹¹, Helen R. Murphy¹², Jouni Uitto¹³, Reuven Bergman^{1,2}, Gabriele Richard¹⁴, Eli Sprecher^{1,2,15} ¹Department of Dermatology and Laboratory of Molecular Dermatology, Rambam Health Care Campus, Haifa, Israel; ²Faculty of Medicine, ¹⁰Faculty of Computer Sciences, ¹⁵Rappaport Institute for Research in the Medical Sciences, Technion – Israel Institute of Technology, Haifa, Israel; ³St John's Institute of Dermatology, The Guy's, King's College and St Thomas' School of Medicine, London, UK; ⁴Department of Dermatology, University of Basel, Switzerland; ⁵Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI, USA; ⁷ Unit of Medical Genetics, St Mary's Hospital, Manchester, UK; ⁸Department of Dermatology, Brown University, Providence, RI, USA; ⁹Migal - Galilee Technology Center, Kiryat-Shmona, Israel; ¹¹Department of Paediatric Dermatology and ¹²Department of Clinical Genetics, Royal Liverpool Children's Hospital, Liverpool, UK; ¹³Department of Dermatology, Thomas Jefferson University, Philadelphia, PA, USA; ¹⁴GeneDx, Gaithersburg, MD, USA
Title:	KRT14 haploinsufficiency results in increased susceptibility of keratinocytes to TNF-α-induced apoptosis and causes Naegeli- Franceschetti-Jadassohn Syndrome
	Naegeli-Franceschetti-Jadassohn syndrome (NFJS) is a rare autosomal dominant disorder characterized by complete absence of dermatoglyphics, reticulate hyperpigmentation of the skin, palmoplantar keratoderma, abnormal sweating, and other subtle developmental anomalies of the teeth, hair, and skin. NFJS was previously shown to map to 17q11.2-q21. In 6 affected families, we identified a total of 4 different heterozygous nonsense or frameshift mutations (Q7X, 17delG, 26delC, C18X) affecting the nonhelical head (E1/V1) domain of KRT14. Using a modified quantitative fluorescent PCR-RFLP assay, we found that mutant cDNA levels were markedly decreased relative to mutant gDNA in patients carrying the C18X, 29delC and Q7X mutations. This indicates that NFJS-causing mutations induce significant mRNA decay. Since increased apoptotic activity was observed in the epidermal basal cell layer in NFJS patients and because previous data suggested that type I keratins may confer resistance to TNF- α -induced apoptosis in epithelial tissues, we assessed the effect of down-regulation of <i>KRT14</i> expression on apoptotic activity in keratinocytes. Using a HaCat cell-based assay, we found that decreased <i>KRT14</i> expression is associated with increased susceptibility to TNF- α -induced apoptosis. This phenomenon was not observed when cells were cultured in the presence of doxycycline, a known negative regulator of TNF- α -dependant pro-apoptotic signalling. Collectively, our results indicate that NFJS results from haploinsufficiency for keratin 14 and suggest that increased susceptibility of keratinocytes to pro-apoptotic signals may be involved in the pathogenesis of this ectodermal dysplasia syndrome.

Section: Proteases and keratinization disorders

Author(s):	Alain Taïeb and Fanny Morice Centre National de Référence pour les Maladies Rares de la Peau, Service de Dermatologie et Dermatologie Pédiatrique, CHU de Bordeaux, France e-mail : <u>alain.taieb@chu-bordeaux.fr</u>
Title:	Insights into pathophysiology of ichthyosis using TTD as a model
	Trichothiodystrophy (TTD) is a congenital hair dysplasia with autosomal recessive transmission. Cross banding pattern under polarized light plus trichoschisis and a low sulfur content are the mandatory features which define the disorder, which is associated with variable and heterogeneous neuroectodermal symptoms. Photosensitive forms with abnormal DNA repair (group I) are caused by mutations in genes encoding subunits of the transcription factor TFIIH. 10% of non photosensitive patients have <i>TTDN1</i> mutations (group II). Group III is composed of non photosensitive non <i>TTDN1</i> mutated patients. The aim of this work was to define clinical features of TTD according to their genetic status and to try to etablish genotype-phenotype correlations. We studied 10 patients from our unit and reviewed 68 cases reported in literature. Clinical data have been related to molecular data. Frequency of congenital ichtyosis is significantly higher in group I. Osteosclerosis and hypogonadism are found in both groups without significant difference. Around 2% of collodion babies have TTD. Our data indicate a strong genotype-phenotype correlation between congenital ichtyosis and group I TTD with DNA repair defects. Mutations in TFIIH sub-units XP-D or B might be responsible for a transcription defect leading to abnormal expression in genes involved in epidermal differentiation. For example it has been shown that the γ isotype of nuclear retinoic acid receptors (RAR γ) is phosphorylated by TFIIH and that this phosphorylation controls receptor association or dissociation with a coregulator. This could explain the particular dermatological features seen in α photosensitive α cases of TTD. The specific role of <i>TTDN1</i> is unknown. It could also be involved in transcription.

Section: Experimental therapies

Author(s):	H. Traupe, K. Aufenvenne, Münster
Title:	Enzyme replacement therapy of lamellar ichthyosis: the current state
	Enzyme replacement therapy has greatly benefited genetic skin diseases such as Fabry disease and holds great promise for transglutaminase-1 (TGase-1) deficient lamellar ichthyosis (LI) and other genetic types of nonsyndromic ARCI. The current therapeutic situation for LI is deplorable. We want to change this by developing an enzyme replacement therapy – in other words a "biological". Several options for administering such a biological are conceivable, e.g. direct injection or application with the help of a cream. We actually favour the approach of administering a cream containing the active enzyme. So far, we have cloned two different TGase-1 constructs – one full length form and a shorter construct which lacks the N-terminal 93 AS of the membrane anchor. Both constructs include a C-terminal His-tag for purification of the recombinant proteins expressed in HighFive cells using the Baculovirus Expression System. To analyze the activity of the recombinant TGases we established a fluorimetric activity assay showing that they have specific activity. Application of TGase-1 protein on cryostat sections of LI skin showed a restoration of the TGase-1 activity, but of course the enzyme is not specifically directed to the cell membrane of cells in the stratum granulosum. Therefore we want to develop a lipid based formulation to pack the enzyme into liposomes in the next step. Thus the next immediate aim is to achieve cellular uptake of both liposome and TGase-1 into the keratinocytes of LI patients in cell cultures.

Author(s):	Anders Vahlquist, MD, PhD, Uppsala University, Sweden
Title:	Therapy of ichthyosis – general principles and substances
	In congenital ichthyosis there may be an abnormal quality or
	quantity of scale produced, abnormal thickness of stratum corneum or
	abnormal keratinocyte kinetics, often associated with skin inflammation.
	Pruritus, skin fragility, ectropion and anhidrosis are frequently associated
	with the rare types of ichthyosis. All these symptoms need therapy.
	Three important mechanisms are involved in the action of most
	agents used in the topical treatment of ichthyosis: hydration, lubrication,
	and keratolysis. The latter effect can also be achieved with systemic
	retinoids. For ichthyosis with increased tendency for skin infections,
	antimicrobials are another group of widely used agents. Considering that
	ichthyosis patients are potential mega-user of topical therapy with an
	estimated life-time consumption of about 1 ton cream per capita,
	surprisingly few controlled trials of various treatments have been
	performed. Moreover nearly all therapeutic principles were established
	long before the recent expansion in knowledge concerning the etiology
	and pathophysiology of ichthyosis. This calls for new ideas and
	intensified efforts to develop future ichthyosis therapies.

Author(s):	A. Vahlquist ¹ , S. Blockhuys ²
	¹ Uppsala University Hospital, SWE, on behalf of the LILI investigators group;
	² Barrier Therapeutics nv, BEL
Title:	Oral liarozole in lamellar ichthyosis (LILI): a multinational, double-blind,
	placebo-controlled trial evaluating safety and efficacy of 75 mg/day and
	130 mg/day ioi 12 weeks
	Liarozole (LIA) is an imidazole inhibiting several mammalian CYP450
	isozymes and, as such, acts as Retinoic Acid Metabolism Blocking
	Agent (RAMBA). LIA has previously been shown an effective and safe
	treatment for psoriasis and congenital ichthyosis at doses up to 150 mg
	b.i.d In this 12-week double-blind trial 64 patients with moderate to
	severe lamellar ichthyosis [Investigator's global assessment (IGA) 3 or 4
	on 5-point Likert scale] received p.o. either once daily placebo (PLAC)
	(N=9), LIA 75 mg (N=27) or LIA 150 mg (N=28); emollients could be
	continued. Patients returned every 4 wks until 4 wks posttreatment.
	Clinical parameters were IGA, Overall Scaling Score, erythema and
	pruritus. At baseline (V2), V3, V5 and V6 subjects completed QOLs
	(SF36 and DLQI); safety tests included blood- and urineparameters, pre-
	and posttreatment ECG, and ophthalmological exams. Primary endpoint
	was the proportion of patients that were responders, defined as a 2-point
	decrease in IGA at week 12. One PLAC patient (11%) was marked as
	responder, whilst 11/27 (41%) on LIA 75 mg and 14/28 (50%) LIA
	150 mg were responders (150 mg vs PLAC: p=0.0557). In both LIA
	groups IGA and Scaling changes from baseline were significanly better
	(p<0.05) than PLAC at wks 8 and 12. There were no safety issues in any
	group. One patient stopped treatment (150 mg/day) after 5 days due to a
	rash. Other AEs were mostly mild to moderate in severity.

Author(s):	A.M. van Steensel, Maastricht
Title:	Our experience with RAMBAs in treatment of congenital ichthyosis
	Synthetic vitamin A derivatives, retinoids, have long been the mainstay of treatment for several disorders of keratinization, notably the ichthyoses and severe acne. Some forms of psoriasis also respond well. However, retinoids have dose-limiting side effects and can be highly teratogenic, limiting their use in women of childbearing age. Children can also experience long-term side effects. Thus, retinoids have significant disadvantages that preclude their use by a large number of patients who would in principle benefit from them. The recent development of compounds that block the catabolism of endogenous vitamin A, called Retinoic Acid Metabolism Blocking Agents or RAMBAs, offers new possibilities. I will discuss how retinoids work, how they are metabolized and how RAMBAs influence this process. I will also review the presently available data from clinical trials with RAMBAs.

Author(s):	Hendrik Verst, Michael Spitzer, Frank Ückert
Title:	Database and Web System of the NIRK Registry
	The NIRK System is an important tool for a better transfer of knowledge
	between basic research, application-oriented research, clinical centres,

and digital pictures.

outpatient physicians, hospitals and patient's own institutions. The system offers a central, web based, patient administration, connected with the structured patient data collection of standardised forms (like the general data, medical evidence, material and intermediate anamnesis)

Section: Workshop on clinical diversity and diagnostic standardization

An important factor is the generic data protection concept:
The concept implementation splits the clinical database into two parts.
The patient-list and the therapy database which are separated logically
and physically. A complex identification process enables the physician to
search for a patient and to receive the needed information as before, but
better secured. The personal data and the therapy data will only be
visually merged on the client of the physician. The concept already is
approved by all data protection officers of the German federal states.
The actual usage statistic as of August 07 presents 580 patients and 16
physicians with one daily access by physicians on average.
The most important next steps are the completion of the implementation
of genealogical trees, the automatization of image uploads and the
further improvement of the internal search engine.

Section: Ichthyoses and the cornified envelope

Author(s):	Weidinger S
Title:	Genetics of epithelial barrier integrity in atopic diseases
	Atopic eczema (AE) is one of the most common inflammatory skin disorders and affects up to 20% of children and up to 10% of adults in developed countries. It is firmly established that AE is under strong genetic control. One of its characteristic features is an impaired epidermal barrier function. A region on chromosome 1q21 which contains the epidermal differentiation complex (EDC) has been linked to AE. Recently, two loss-of-function mutations (R501X and 2282del4) within the EDC gene filaggrin (<i>FLG</i>) causing ichthyosis vulgaris, one of the most common inherited skin disorders of keratinisation, have been identified. Subsequently a variety of case-control and transmission studies firmly established an association between each of the two prevalent <i>FLG</i> null alleles and AE. Thus, reduction or loss of <i>FLG</i> expression leads to a disturbed barrier formation, which manifests as varying degrees of dry skin, ichthyosis, and/or eczema. In addition, it might allow an increased passage of antigens, allergens, and chemicals through the epidermis and thereby facilitate allergic sensitization and increased IgE levels in the context of AE. In the meantime additional less common <i>FLG</i> mutations associated with AE also in non-European populations have been reported. The results on <i>FLG</i> mutations provide strong evidence for the hypothesis that a genetically-determined primary disruption of the epidermal skin barrier is a key-event in the pathogenesis of AE and a considerable risk factor for the development of subsequent sensitizations and respiratory diseases.

Section: European and international perspective

Author(s):	Ingrid Zwoch
Title:	Orphan Diseases and the European Union – what patients and scientists may expect
	The contribution will focus on the Seventh European Framework
	Programme for Research and Technological Development, its
	objectives, structure and budget. The area of rare diseases within
	Theme 1 of the Specific Programme Cooperation of the European Union
	will be presented as well as participation possibilities for the funding
	schemes available.
	will be presented as well as participation possibilities for the funding schemes available.

We thank the Federal Ministry of Education and Research for supporting our NIRK network and this conference.

Gefördert vom

Bundesministerium für Bildung und Forschung

We thank for the sponsoring of the conference dinner on 31st August and the service during the conference:

