

AML-CG 2013:

Planning a Clinical Trial with Population Enrichment and Consideration of Interim Patients

Dr. Sandra Ligges
Institut für Biometrie und Klinische Forschung
WWU Münster

40 Jahre Medizinische Informatik und Biometrie in Münster Biometrie-Symposium 3. Juli 2013

Primary Trial Objectives

- I. All patients: $ORR_{FS-HAI} > ORR_{S-HAM}$
- II. Subgroup (ELN intermediate/adverse):

$$ORR_{FS-HAI} > ORR_{S-HAM}$$

- III. Safety: $ORR_{FS-HAI} < ORR_{S-HAM}$
- Design constraints
 - Overall significance level: 5%
 - Overall power: $\sim 80\%$ (ORR_{S-HAM}/ORR_{FS-HAI} = 74%/83%)
 - Number of patients: 600 900 (~ 160 per year)
 - Trial Duration (years): 4-6 (Randomization) + 4 (Follow-Up)

Key Secondary Trial Objectives

- Feasibility and efficacy of MRD guided post remission therapy in ELN favorable patients
 - Comparison of RFS and OS to historic control
 (AML-CG 1999, AML-CG 2004, AML-CG 2008)
- Efficacy of 1 g/m² AraC in S-HAM induction treatment in patients < 60 years
 - Comparison of ORR, RFS, OS to historic control
 (AML-CG 2004, AML-CG 2008)

Key Secondary Trial Objectives

- Comparison of MRD status for treatment groups at different time points by χ^2 -tests
- Investigation if early detection of molecular/hematological relapse is prognostic and predictive for RFS and OS in ELN favorable patients
 - Construction of time dependent Cox model

Further Secondary Trial Objectives

- Univariate and multivariate analyses of ORR, EFS, RFS, OS and RD according to treatment group, age, sex, CIRS score, karyotype, genotype, early response, extramedullary manifestations and molekular markers
- Investigation of treatment associated side effects
- Correlation analysis of PB-MRD and BM-MRD
- Investigation of quality of life
- ...

- Problem: ORR_{FS-HAI} > ORR_{S-HAM} true for all patients?
- Solution:
 - Two-stage adaptive design
 - Interim Analysis after 500 patients
 - Hierarchical testing:
 - 1st population: All patients
 - 2nd population: Subgroup (ELN intermediate/adverse)

- Solution (continued):
 - If
 - All patients: ORR_{FS-HAI} ~ ORR_{S-HAM}
 - Subgroup: ORR_{FS-HAI} >> ORR_{S-HAM}
 - Then change hierarchical testing:
 - 1st population: Subgroup
 - 2nd population: All patients
 - End analysis according to original or revised hierarchical order

- Test Procedure: One-sided χ^2 -test
- Overall significance level: One-sided 2.5%
- Study Design: Two-stage adaptive (modified Simes)
 - In interim analsis additionally possibility of
 - Stopping for futility
 - Stopping for promising efficacy
 - Recalculation of sample size for 2nd stage
 - Accounting for interim patients

1st stage (500 patients)

- a) Stop recruitment if $p_1 \le \alpha_1$
- b) Go on if $\alpha_1 < p_1 \le \alpha_0$
- c) Stop for futility if $\alpha_0 < p_1$

2nd stage

- a) Reject H_0 if $p_2 \le c_1$ (120 interim patients)
- b) Reject H_0 if $p_2 \le c_2$ (374 further patients)
- c) Retain H_0

Power for Primary Objective I

$ORR_{S-HAM} = 0.74$	$ORR_{FS-HAI} = 0.83$
Power for $p_1 \le \alpha_1$ $(n_1 = 500)$	54.9%
Power for $p_1 \le \alpha_0 \ (n_1 = 500)$	97.4%
Power for $p_2 \le c_1 \ (n_2 = 120)$	88.6%
Power for $p_2 \le c_2 \ (n_2 = 374)$	73.8%
Overall Power ($n = 620-874$)	80%

Hypothetical Design for Primary Objectives I and II with no Consideration of Interim Patients

1st stage (500 patients)

- a) Stop recruitment if $p_1 \le \alpha_1$
- b) Go on if $\alpha_1 < p_1 \le \alpha_0$
- c) Stop for futility if $\alpha_0 < p_1$

2nd stage

- a) Reject H₀
- b) Reject H_0 if $p_2 \le c_2$ (288 further patients)
- c) Retain H₀

Hypothetical Design for Primary Objectives I and II with no Consideration of Interim Patients

$$\alpha_1 = 1\%$$
 $\alpha_0 = 30\%$
 $c = 5.2\%$

1st stage (500 patients)

- a) Stop recruitment if $p_1 \le \alpha_1$
- b) Go on if $\alpha_1 < p_1 \le \alpha_0$

Stop recruitment if $p_1 \le \alpha_1$ and reject H_0 if $p_2 \le 0.5$ (120 interim patients) \Rightarrow Power 73.8%, $\alpha = 2\%$ ($n_2 = 428$ patients necessary for power 80%)

- b) Reject H_0 if $p_2 \le c_2$ (288 further patients)
- c) Retain H_0

- Problem:
 - Does FS-HAI harm: ORR_{FS-HAI} < ORR_{S-HAM}?
- Strategy:
 - Group Sequential Design with
 - 6 stages (frequent checks)
 - Unbalanced information rates ⇒ merging of analyses
 - Pocock boundaries

Power for Primary Objective III

$ORR_{S-HAM} = 0.74$	$ORR_{FS-HAI} = 0.56$	$ORR_{FS-HAI} = 0.64$	$ORR_{FS-HAI} = 0.72$
Stage 1 (n = 167):	51.2%	15.0%	1.6%
Stage 2 $(n = 334)$:	86.5%	35.4%	3.2%
Stage 3 $(n = 500)$:	97.2%	54.1%	4.6%
Stage 4 ($n = 620$):	99.2%	65.8%	5.7%
Stage 5 $(n = 747)$:	99.8%	75.2%	6.8%
Stage 6 $(n = 874)$:	>99.9%	82.4%	7.9%

References

- Bauer, P. (1989): Multistage Testing with Adaptive Designs,
 Biometrie und Informatik in Medizin und Biologie 20, 130 148.
- Bauer, P. and Köhne, K. (1994): Evaluation of Experiments with Adaptive Interim Analyses, *Biometrics* **50**, 1029 1041.
- Faldum, A. and G. Hommel (2007): Strategies for Including Patients Recruited During Interim Analysis of Clinical Trials,

 Journal of Biopharmaceutical Statistics 17 (6), 1211 1225.
- Hommel, G. (2001): Adaptive Modifications of Hypotheses After an Interim Analysis, *Biometrical Journal* **43** (5), 581 589.
- Wang, S.J., Hung, H.M.J., and O'Neill, R.T. (2009): Adaptive Patient Enrichment Designs in Therapeutic Trials, *Biometrical Journal* **51** (2), 358 374.

Thank you very much for your attention!

AML-CG 2013:

Planning a Clinical Trial with Population Enrichment and Consideration of Interim Patients

Dr. Sandra Ligges
Institut für Biometrie und Klinische Forschung
WWU Münster

40 Jahre Medizinische Informatik und Biometrie in Münster Biometrie-Symposium 3. Juli 2013

