

Can policy makers trust the outcomes of Bayesian analyses?

The case of clinical trials and rare diseases

Dr. rer. nat. Joachim Gerß, Dipl.-Stat.

joachim.gerss@ukmuenster.de
Institute of Biostatistics and Clinical Research

Regulators' view: EMA CHMP Guideline on clinical trials in small populations

- There are no special methods for designing, carrying out or analysing clinical trials in small populations. There are, however approaches to increase the efficiency of clinical trials.
- The following [...] approaches [...] may be helpful in particular situations.

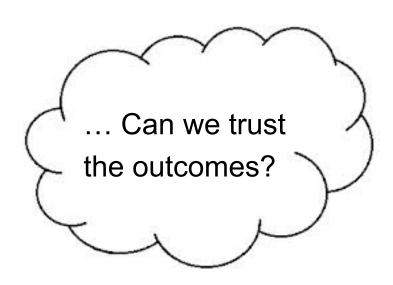
 Bayesian methods [...] are a way to formally combine knowledge from previous data or prior 'beliefs' with data from a study. Such methods may be advantageous when faced with small datasets, although introducing prior beliefs is often a concern in drug regulation.

Regulators' view: EMA CHMP Draft Guideline on clinical trials in small populations

- There are no special methods for designing, carrying out or analysing clinical trials in small populations. There are, however approaches to increase the efficiency of clinical trials. <u>Further, some methodological approaches, not</u> <u>acceptable in large trials, may be considered acceptable for trials in small and very small populations.</u>
- The following [...] approaches [...] may be helpful in particular situations.
 - Relaxing the type I error boundary increases the risk of false positive trial results. There are however, situations where such an approach is acceptable.
 - Bayesian methods [...] are a way to formally combine knowledge from previous data or prior 'beliefs' with data from a study. Such methods may be advantageous when faced with small datasets, although introducing prior beliefs is often a concern in drug regulation. [...] being able to use knowledge of likely effects of drugs due to their chemical form, likeness to other existing compounds, mechanism of action, and so on, is a very valuable addition to sparse data.

Popular Bayesian Methods

- Combination of knowledge from previous data or prior 'beliefs' with data from a current study
- Dose finding: Continual reassessment method
- Response-adaptive randomization
- Prediction of the study result using predictive probabilities
- Borrowing of information across related subpopulations



Contents

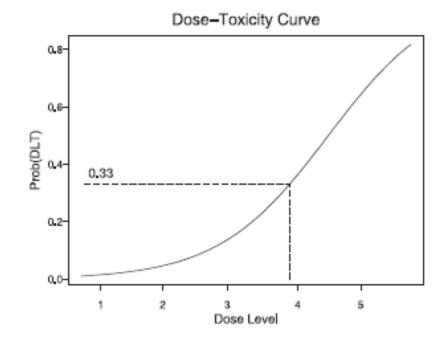
- 1. Dose finding in Phase I trials
- 2. Response-adaptive randomization
- 3. Interim analyses using predictive probabilities
- 4. Combination of prior 'beliefs' with data from a study
- 5. Summary and Conclusion

Contents

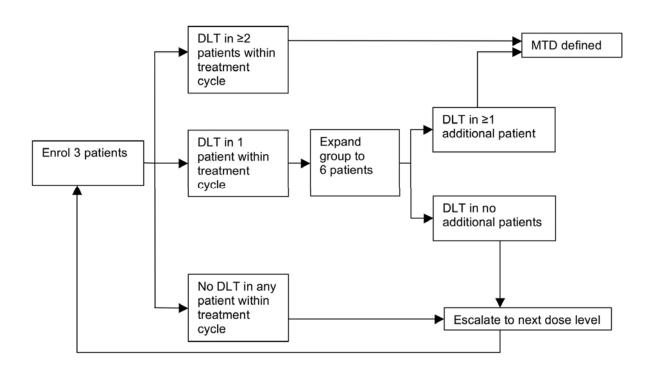
- 1. Dose finding in Phase I trials
- 2. Response-adaptive randomization
- 3. Interim analyses using predictive probabilities
- 4. Combination of prior 'beliefs' with data from a study
- 5. Summary and Conclusion

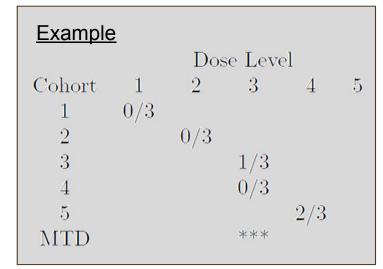
1. Dose finding in Phase I trials

- Set a starting dose and further increasing dose levels
- Define a dose-limiting toxicity (DLT)
- Define the target toxicity level (TTL),
 typically TTL = 20% 33%
- Identify the maximum tolerated dose (MTD),
 i.e. the dose with Prob(DLT) = TTL



1. Dose finding in Phase I trials Traditional 3+3 Design





1. Dose finding in Phase I trials The Bayesian Continual Reassessment Method (CRM)

- 1. Parametric model of the dose-toxicity relationship $p(d) = exp{3+ad} / (1+exp{3+ad})$
- 2. Set target toxicity level TTL=30%.
- 3. Treat the first patient at the dose level closest to the current estimate of the MTD.
- 4. Observe the toxicity outcome.
- 5. Obtain the *posterior distribution* of the probability of toxicity p(d) at each dose level d.
- 6. Treat the next patient at the dose level closest to the updated estimate of MTD.
- 7. Repeat Steps 4-6.

<u>Example</u>		Dose Level	Tox	Dose Level 1	Dose Level 2	Dose Level 3	Dose Level 4	Dose Level 5	Dose Level 6
				p=0.05	p=0.10	p=0.20	p=0.30	p=0.50	p=0.70
	Patient 1	4	0	p=0.00	p=0.00	p=0.02	p=0.04	p=0.14	p=0.38
	Patient 2	6	1	p=0.05	p=0.10	p=0.20	p=0.31	p=0.51	p=0.70
	Patient 3	4	1	p=0.34	p=0.45	p=0.57	p=0.65	p=0.76	p=0.84
	Patient 4	1	0	p=0.16	p=0.25	p=0.39	p=0.49	p=0.65	p=0.79

1. Dose finding in Phase I trials Bayesian CRM versus Traditional 3+3 Design

Buycon		W VC 130		aai			OD	COIS	J''			1
Operating characteristics (Simulation stud			dies)	Target t	oxicity (TL)		aver	age sam Pct. ^C	iple size of patients	de _{nelob} iu.	g DL'	
					Dose			Ave	%			
			1	2	3	4	5	N	DLT			
	Scenario	1 P(DLT):	0.05	0.15	0.30	0.45	0.60					
	3+3	% patients	26.0	32.5	27.2	12.1	2.3	15.2	21.1			
		% MTD	20.5	42.7	27.5	5.7	0					
CRM with coh	ort size 1	% patients	15.6	24.1	34.7	19.0	6.7	18.5	27.0			
		% MTD	1.0	21.4	52.4	23.0	2.2					
CRM with coh	ort size 3	% patients	21.3	31.4	29.1	15.8	2.5	19.0	23.3			
		% MTD	1.5	22.6	49.8	23.7	2.4					
						J						

% of patients treated at target toxicity level (TTL)

% of patients treated with doses above TTL

% of dose level selected as the MTD

Results

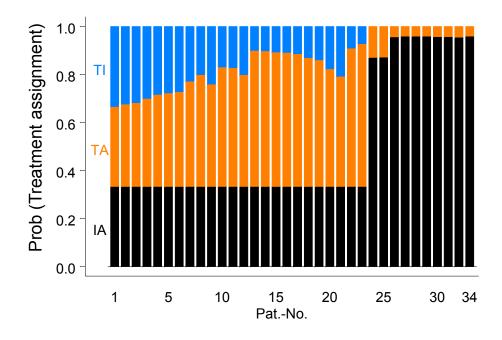
- CRM more accurate identifies the MTD compared to 3+3 design.
- On the other hand, CRM treats more patients at the MTD level and above. CRM with cohort size of 3 instead of 1 offers some protection.

Contents

- 1. Dose finding in Phase I trials
- 2. Response-adaptive randomization
- 3. Interim analyses using predictive probabilities
- 4. Combination of prior 'beliefs' with data from a study
- 5. Summary and Conclusion

2. Response-adaptive randomization

- Consider a randomized two- or multi-arm clinical trial
- Response-adaptive randomization:
 Randomized Treatment Assignment not with equal and fixed probabilities,
 but increased assignment of patients to more promising treatments



2. Response-adaptive randomization Example: Phase IIB design with binary response

- 2 treatment arms k=1,2
- Denote θ_k the response probability in arm $k \in \{1,2\}$
- Goal: Find the treatment arm k corresponding to the largest response probability θ_k
- Algorithm
 - 1. Randomize the first 14 patients to treatment arm 1 and 2 with equal probability 1/2.
 - 2. After each observed outcome, compute the (posterior) probability of each arm k to be the best arm, using all currently available data ("Prob(arm k is best)")
 - 3. "Early loser": If Prob(arm k is best) $< p_L = 0.025$, then arm k is declared the loser and is suspended.
 - 4. "Early winner": If Prob(arm k is best) > p_U =0.975, then arm k is declared the winner and the trial is stopped early.
 - 5. "Futility": If $Prob(\theta_k > 0.5 | data) < 0.05$, then arm k is declared futile and is suspended.
 - 6. Assign patients to treatment groups with probability proportional to Prob(arm k is best)^c (with tuning parameter c=1), but never lower than 0.1.
 - 7. "Final winner" at max. no. pat.=60: If Prob(arm k is best)>p*_U=0.9, declare arm k winner

any time during the trial

2. Response-adaptive randomization Example: Simulated operating characteristics

1. "Null" scenario

Scenario 1 Average Trial Length: 22.5 months

Arm	True Pr (success)	Pr (select)	Pr(select early)	\ <u>_</u>	# Patients (2.5%, 97.5%)
Arm1	$0.55 \\ 0.55$	0.01	0	0.11	19.6 (5, 38)
Arm2		0.16	0.11	0	35.6 (8, 53)

Type I error = 0.17

2. "Most likely" scenario

Scenario 2

Average Trial Length: 16.4 months

Arm	True Pr (success)	Pr (select)	Pr(select early)	\ _	# Patients (2.5%, 97.5%)
Arm1 Arm2	$0.55 \\ 0.7$	0 0.74	0 0.55	0.55 0	10.1 (4, 22) 30.8 (4, 51)

3. "Optimistic" scenario

Scenario 3

Average Trial Length: 10.8 months

Arm	True Pr (success)		Pr(select early)	\ I	# Patients (2.5%, 97.5%)
Arm1 Arm2	0.55 0.8	0.96	0 0.89	0.89	7.01 (4, 16) 20.1 (4, 51)

Power

Contents

- 1. Dose finding in Phase I trials
- 2. Response-adaptive randomization
- 3. Interim analyses using predictive probabilities
- 4. Combination of prior 'beliefs' with data from a study
- 5. Summary and Conclusion

3. Interim analyses using predictive probabilities Example: Randomized survival trial

- Standard frequentist design:
 - 360 subjects
 - 1:1 randomization
 - 6-month follow-up
 - Final analysis: Logrank test with two-sided significance level α =0.05
 - In case median survival times = 13 versus 10 weeks => power=70%
 In case median survival times = 14 versus 10 weeks => power=89%
- Alternative Bayesian adaptive design:
 - As above, but with additional *interim analyses*:

```
Accrual of
Pat. 1

Pat. 100 →

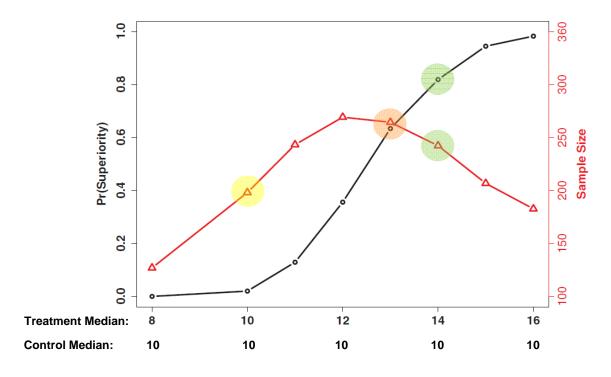
Pat. 120 →

Pat. 140 →

Pat. 140
```

3. Interim analyses using predictive probabilities Example: Simulated Operating characteristics

- Standard frequentist design:
 - In case median survival times = 13 versus 10 weeks => power=70%
 In case median survival times = 14 versus 10 weeks => power=89%
- Alternative Bayesian adaptive design:



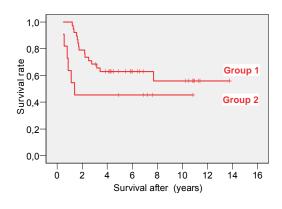
- If the treatment is ineffective the design determines this very effciently (mean sample size = 202).
- Median survival times = 13 vs. 10 weeks
 => power = 63.4%,
 with a mean sample size of only 271.
- Median survival times = 14 vs. 10 weeks => power = 81.9%, with a mean sample size of only 248.

Contents

- 1. Dose finding in Phase I trials
- 2. Response-adaptive randomization
- 3. Interim analyses using predictive probabilities
- 4. Combination of prior 'beliefs' with data from a study
- 5. Summary and Conclusion

4. Combination of prior 'beliefs' with data from a study Randomized survival trial

Classical "frequentist" statistical analysis Example 1

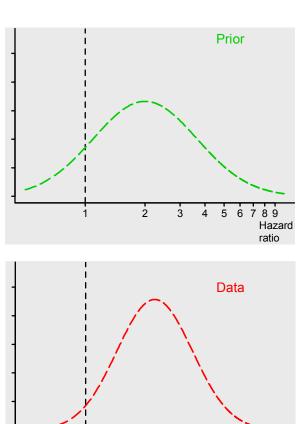


95% CI 0.947-5.238

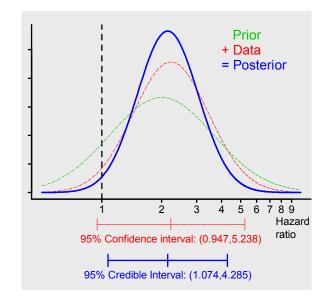
HR=2.227

p=0.0990

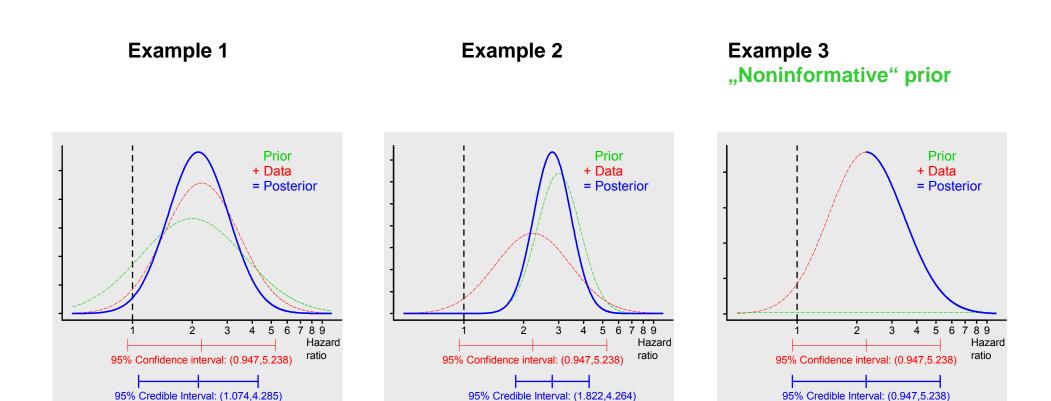
Bayesian analysis



95% Confidence interval: (0.947.5.238)



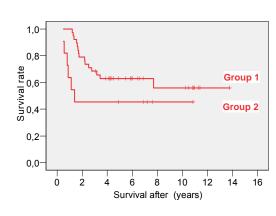
4. Combination of prior 'beliefs' with data from a study Randomized survival trial



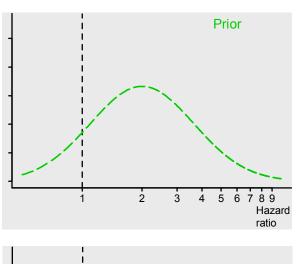
4. Combination of prior 'beliefs' with data from a study Randomized survival trial: Frequentist & Bayesian analysis

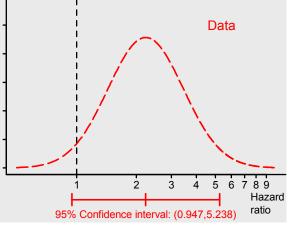
Classical "frequentist" statistical analysis

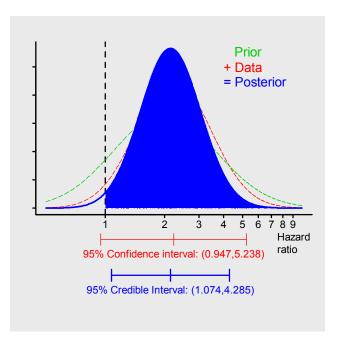
Bayesian analysis



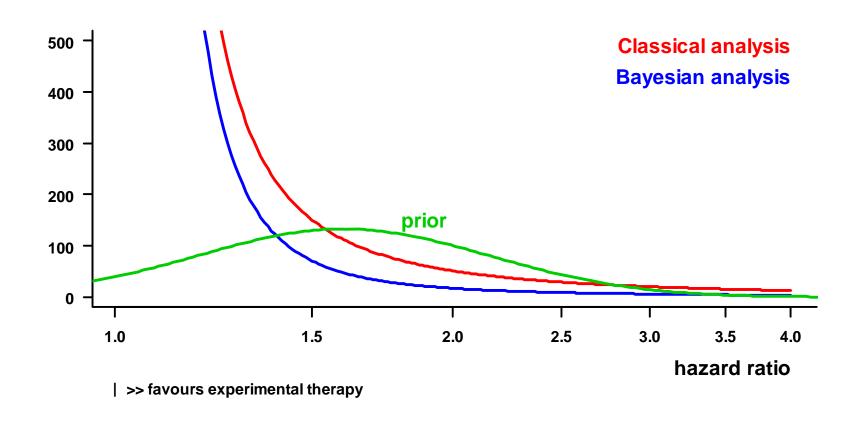
HR=2.227 95% CI 0.947-5.238 p=0.0990



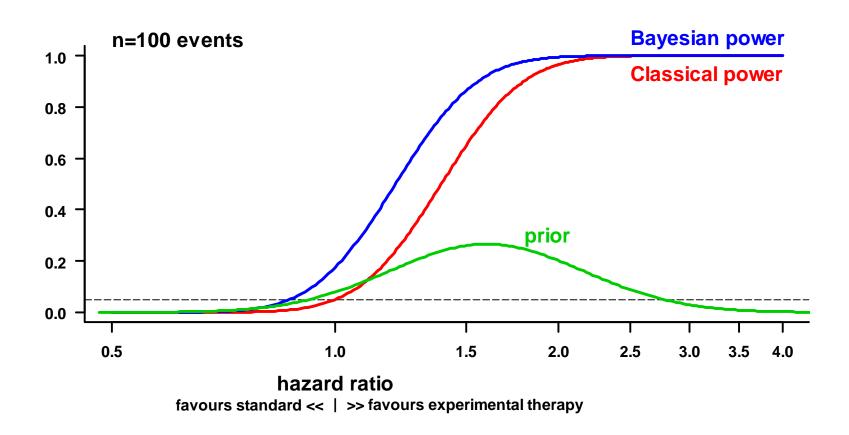




4. Combination of prior 'beliefs' with data from a study Sample size



4. Combination of prior 'beliefs' with data from a study Type I error and power



Contents

- 1. Dose finding in Phase I trials
- 2. Response-adaptive randomization
- 3. Interim analyses using predictive probabilities
- 4. Combination of prior 'beliefs' with data from a study
- 5. Summary and Conclusion

Summary and Conclusion

Examples: 2. Bayesian responseadaptive randomization Bayesian response-adaptive randomization Bayes 3. Interim analyses using predictive probabilities Bayesian predictive probabilities Bayesian predictive probabilities Final analysis Bayesian response-adaptive randomization Bayes Frequentist

4. Combination of prior 'beliefs' with data from a study

Bayes

Summary and Conclusion

Final Examples: Supplementary task analysis Bayesian response-Bayesian response-adaptive randomization Bayes adaptive randomization Bayesian response-adaptive randomization Frequentist Bayesian predictive probabilities Bayes Interim analyses using predictive probabilities Bayesian predictive probabilities Frequentist 4. Combination of prior Bayes 'beliefs' with data from a study

All Bayesian approaches: ... using either an informative or a noninformative prior

Frequentist

Summary and Conclusion: Bayesian methods in clinical trials

Validity of analysis outcomes

	Trials in large populations	Trials in small populations, Medical device trials
Phase I trials (toxicity)	✓	
Phase II trials (efficacy)	✓	
Phase III trials (supplementary tasks)	✓	✓
Phase III trials (final analysis)		✓ Cave!

Summary and Conclusion: Bayesian methods in clinical trials

- Validity of analysis outcomes and Regulators' view

	Trials in larg populations	е	populations	Trials in small populations, Medical device trials		
Phase I trials (toxicity)	✓	✓	✓	✓		
Phase II trials (efficacy)	✓	✓	✓	✓		
Phase III trials (supplementary tasks)	✓	✓	✓	✓		
Phase III trials (final analysis)			✓ Cav	e! (√)		

Summary and Conclusion:

Can policy makers trust outcomes of Bayesian analyses?

- Early phase clinical trials ("in-house studies" w/o strict regulatory control):
 Yes! And many Bayesian approaches are more powerful than classical approaches.
- Late phase trials
 - Yes! Bayesian methods can be constructed so that (frequentist long-run)
 operating characteristics are maintained (type I error, power)
 - ... But Bayesian methods in a strict corset of frequentist quality criteria are usually not much more powerful than classical frequentist methods ("Bayesians cannot perform magic.")
 - Particularly flexible and powerful Bayesian methods are those that
 - apply some kind of paradigm shift w.r.t. quality criteria and/or
 - follow less stringent requirements w.r.t. e.g., type I error control

Summary and Conclusion:

Can policy makers trust outcomes of Bayesian analyses?

- The case of clinical trials and rare diseases
- Early phase clinical trials: Apply powerful Bayesian approaches!
- Late phase trials
 - Large scale confirmatory trials are often not feasible
 - Some kind of paradigm shift w.r.t. quality criteria and/or less stringent requirements w.r.t. e.g., type I error control may be accepted.
 - Apply powerful Bayesian approaches, paying attention to
 - choose the appropriate model carefully,
 - choose the inputted (prior) information carefully and
 - check (classical) operating characteristics (type I error, power).

Literature

- Berry SM, Carlin BP, Lee JJ, Müller P (2010): Bayesian Adaptive Methods for Clinical Trials. Chapman
 & Hall/CRC Biostatistics.
- Spiegelhalter DJ, Abrams KR, Myles JP (2004): Bayesian Approaches to Clinical Trials and Health-Care Evaluation. Wiley Series in Statistics in Practice.
- European Medicines Agency, Committee for Medicinal Products for Human Use (CHMP) (2006):
 Guideline on Clinical Trials in Small Populations (CHMP/EWP/83561/2005).
 http://www.emea.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003615.
 pdf
- U. S. Food and Drug Administration, Center for Devices and Radiological Health (2010): Guidance for the Use of Bayesian Statistics in Medical Device Clinical Trials.
 http://www.fda.gov/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm071072.htm
- Tan SB, Dear KBG, Bruzzi P, Machin D (2003): Strategy for randomised clinical trials in rare cancers.
 British Medical Journal 327;47-49.